
 

   
 

Mémoire présenté devant l’ENSAE Paris 

pour l’obtention du diplôme de la filière Actuariat  

et l’admission à l’Institut des Actuaires 

le 05/03/2025 

Par : Matthieu Dufourd 

  

Titre: Development of a P&C per risk reinsurance pricing tool 

   

  

  

Confidentialité :  NON  OUI (Durée :  1 an  2 ans) 

Les signataires s’engagent à respecter la confidentialité indiquée ci-dessus  

Membres présents du jury de la filière 

Nom : Pierre Picard 
 

Entreprise :  

   Nom : AXA Group Ceded Reinsurance 

  

 

 

 Signature : 

 

Membres présents du jury de l’Institut 

des Actuaires 

 Directeur de mémoire en entreprise : 

   Nom : Nicolas Richard 

   Signature : 

   
 

    

   Autorisation de publication et de 

mise en ligne sur un site de 

diffusion de documents actuariels 

(après expiration de l’éventuel délai de 

confidentialité) 

   

   

   

   Signature du responsable entreprise 

    

   

Secrétariat :  

  Signature du candidat 

    

Bibliothèque :  

   

 
Ecole Nationale de la Statistique et de l’Administration Economique (ENSAE) 

5, avenue Henry Le Chatelier - 91120 PALAISEAU, FRANCE 



p. 1 

 

Résumé 

Au sein d’AXA Group Ceded Reinsurance (AGCRe), les traités de réassurance sont modélisés et appréciés via la production de 

différents indicateurs pour estimer leur rentabilité en vue des comités de souscription. Cependant, AGCRe ne dispose pas d’un 

contrôle direct sur le processus de modélisation, complexifiant l'adaptation des modèles aux besoins spécifiques des entités d'AXA 

et l’évaluation de nouveaux traités. En outre, certains traités de réassurance ne sont pas modélisés et nécessitent des études 

ponctuelles au cas par cas. S’inscrivant dans ce contexte, ce mémoire a pour objectif de développer une méthodologie globale et 

centralisée d’évaluation du risque cédé au travers des traités de réassurance non-vie (souscrits ou prospectifs). Cette méthodologie 

sera déployée de manière automatisée sous la forme d’un outil opérationnel ayant pour objectif d’offrir une vision interne propre 

à l’entité lui permettant d’accroitre sa capacité à tarifer un plus grand nombre de traités.  

Ce mémoire présente donc les étapes et la réflexion autour de la méthodologie développée dans le cadre de la conception de cet 

outil de tarification. Ce dernier s’articule autour de trois modules, chacun correspondant à un axe principal de la méthodologie. 

Le premier module est dédié à la transformation des sinistres historiques, dont l’objectif principal est d’obtenir la charge à l’ultime. 

Le deuxième module, s’appuyant sur les résultats du premier, se concentre sur la modélisation des sinistres sous-jacents à travers 

diverses approches, telles que les courbes d’exposition ou les modèles de type fréquence-coût, adaptés à certains types de traités. 

Enfin, le troisième module utilise la méthode de Monte Carlo pour générer les indicateurs de risque et de profitabilité relatifs à 

chaque traité en intégrant des aspects liés au coût en capital du traité. 

 

Mots clés : Tarification en réassurance non-vie, Tarification par expérience, Tarification par exposition, Modèle collectif, Théorie 

des valeurs extrêmes, Provisionnement des sinistres, Mise en as-if des sinistres historiques, Ajustement de distributions type 

fréquence/sévérité, Simulations de Monte Carlo, Recouvrements modélisés, Indicateurs de risque et de rentabilité de la 

réassurance proportionnelle et non proportionnelle. 
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Abstract 

Within AXA Group Ceded Reinsurance (AGCRe), reinsurance treaties are modeled and assessed by producing various risk and 

profitability indicators for underwriting committees. However, AGCRe does not have direct control over the modeling process, 

making it difficult to adapt models for the specific needs of AXA entities and to evaluate new treaties. In addition, around 20% of 

reinsurance treaties are not modeled, requiring case-by-case studies. Against this backdrop, the aim of this thesis is to develop a 

global, centralized methodology for assessing the risk ceded through non-life reinsurance treaties (underwritten or prospective). 

This methodology will be deployed in the form of an operational tool, with the aim of providing an internal view specific to the 

entity, enabling it to increase its capacity to price a greater number of treaties. 

This actuarial thesis presents the steps and considerations that guided the development of the pricing tool's methodology. The tool 

itself is organized around three main modules, each corresponding to a core aspect of the methodology. The first module focuses 

on transforming historical claims, with the primary purpose of determining the ultimate loss. The second module, built on the 

results of the first one, aims to model underlying claims through various approaches, such as exposure curves or frequency-severity 

models. Finally, the third module employs the Monte Carlo method to generate indicators related to each treaty, incorporating 

aspects linked to the treaty's cost of capital. 

 

Keywords: P&C reinsurance pricing, Experience rating, Exposure rating, Collective risk model, Extreme value theory, Chain-

Ladder claims reserving, As-if Ultimate historical claims adjustment, Frequency & severity distribution fitting, Monte Carlo 

simulations, Modeled recoveries, Proportional and non-proportional reinsurance risk & profitability indicators 
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Note de synthèse 

Souvent qualifiée d’« assurance des assureurs », la réassurance est un mécanisme de répartition des risques par lequel un assureur  

transfère tout ou une partie de ses risques à une société d'assurance tierce, le réassureur. Elle est matérialisée par différents types 

de contrats appelés traités de réassurance. Ces traités peuvent être classés en quatre grandes catégories : les Excess of Loss (XL) 

par risque ou par événement, les Aggregate (AGG), les Quota-Share (QS) et les Surplus (SP). Ces traités permettent de transférer 

les risques de manière proportionnelle ou non proportionnelle. 

En tant que réassureur interne du groupe AXA, Axa Group Ceded Reinsurance (AGCRe) est responsable de la gestion de 

l’ensemble des opérations de réassurance du groupe. Pour ce faire, AGCRe dispose de plusieurs stratégies concernant la gestion 

des traités : elle peut choisir d’accepter entièrement les traités venant des entités et agir en tant que seul réassureur, de les céder à 

d’autres réassureurs, ou de n’en retenir qu’une partie qu’elle place sein d’un pool de réassurance. La figure ci-dessous illustre le 

fonctionnement de la gestion des traités de réassurance au sein d’AGCRe. 

 

Figure 1 : Les traités de réassurance au sein d’AGCRe 

En vue des comités de souscription, l’équipe Analytics and Pricing est chargée de fournir divers indicateurs relatifs aux traités 

afin d’évaluer leur risque. À cet effet, même si l’équipe est aujourd’hui capable d’évaluer la majorité des traités souscrits par 

AGCRe, environ 20% des traités ne sont pas modélisés à l’aide du modèle interne, qui concerne principalement les traités XL 

placés au sein de pools de réassurance. Les traités QS, SP, AGG et certains traités XL par risque font donc actuellement l’objet 

d’études au cas par cas en fonction des demandes des cédantes, ce qui tend à être fastidieux. En outre, les modèles actuels sont 

basés sur des directives établies à l’échelle du groupe AXA et reposent sur des logiciels externes, ce qui restreint le contrôle de 

l’équipe sur leur processus de modélisation. Cette dépendance réduit par ailleurs la capacité de l’équipe à exploiter pleinement ses 

propres bases de données et empêche d’offrir une vision propre à l’entité sur les traités de réassurance souscrits. Cette situation 

soulève donc la problématique suivante et pose le cadre de ce mémoire d’actuariat : Comment AGCRe peut-elle, grâce à une 

approche de modélisation centralisée, robuste, flexible et entièrement contrôlée, développer une vision interne lui permettant 

d’évaluer les risques associés au plus grand nombre de traités de réassurance ? 

A l’aide du développement d’une méthodologie propre à l’entité matérialisée par le développement d’un outil de tarification sur 

R shiny, nous visons à augmenter les capacités d'évaluation des traités en modélisant de manière automatique les différents traités 

qui ne sont pas intégrés au modèle interne. Cet outil a également pour objectif de fournir à l’équipe Analytics & Pricing une 

opinion supplémentaire leur permettant de produire les indicateurs d’intérêt en vue des comités de souscription via un processus 
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entièrement contrôlé et transparent. L’étude se limitera cependant aux traités de réassurance non-vie couvrant un horizon temporel 

d’une durée d’un an et concernera quatre types de traités de réassurance souscrits par AXA : les XL par risque, les QS, les AGG 

et les SP1, qui sont des traités actuellement partiellement ou non modélisés via le modèle interne. La Line of Business (LoB) CAT 

n’est à ce jour pas prise en charge au sein de l’outil même si ce dernier est conçu pour intégrer à l'avenir les données issues de 

modèles CAT, et permettre ainsi la modélisation et la tarification de traités CAT. 

L’outil ainsi développé et son architecture reposent sur trois modules principaux, correspondant à des axes majeurs de la 

méthodologie de tarification ici développée : un module de sélection et de transformation des données, un module de modélisation 

des pertes couvertes par le traité de rassurance et enfin le calcul des différents indicateurs retenus pour les comités de souscription. 

Lors de la tarification et de l’estimation des indicateurs relatifs à un traité de réassurance, la première étape consiste à sélectionner 

les bases de données nécessaires à son évaluation. En fonction du type de traité à tarifer, ces dernières vont différer en raison des 

modèles utilisés qui ne nécessitent pas les mêmes besoins en termes de données. Nous disposons dans un premier temps de 

l'historique des sinistres (montants payés et provisionnés) déclarés au-delà de certains seuils par toutes les entités d'AXA, sur 

l’ensemble des LoBs et atteignant une profondeur historique pouvant aller jusqu'à 30 ans. Dans le cadre d’un traité XL par risque, 

la sinistralité individuelle est considérée tandis que la sinistralité agrégée est retenue pour la tarification des AGG et QS. Afin 

d’estimer la sinistralité sous-jacente de la manière la plus fine possible, il est nécessaire d’évaluer les perte s à l’ultime, qu’elles 

soient annuelles ou agrégés. Pour ce faire, la méthode de Chain-Ladder a été retenue afin d’estimer les IBNR (Incurred But Not 

Reported) et donc le montant ultime associée à chaque sinistre. Afin d’évaluer les traités AGG et QS, les loss ratio à l’ultime seront 

modélisés en utilisant les montants de primes sous-jacents au traité. Concernant les traités XL par risque, la sinistralité individuelle 

étant considérée, le nombre de sinistres par année est une variable d’intérêt. Étant donné les limites du caractère purement 

multiplicatif de Chain-Ladder, le modèle de Schnieper a été retenu pour estimer la fréquence des sinistres. Une mise en as-if visant 

à prendre en compte des facteurs tel que l’inflation a également été réalisée afin d’ajuster les montants des sinistres individuelles. 

Enfin, un payment pattern est calibré pour chaque traité afin d’estimer la cadence de paiement des sinistres et ce pour des 

considérations d’actualisation dans le calcul des paiements réalisés par le réassureur, qui peuvent s’étendre sur plusieurs années. 

 

Figure 2 : Module de sélection et transformation des données 

 
1 Seulement pour les surplus couvrant la LoB Property 
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La méthode de Monte Carlo a été retenue pour modéliser la sinistralité sous-jacente en raison de sa flexibilité. En permettant 

d’obtenir une distribution de recouvrements intégrant l’impact des conditions des traités, cette méthode permet de calculer un 

nombre d’indicateurs plus conséquent. Concernant la modélisation des pertes sous-jacentes, la méthodologie retenue est similaire 

pour les traités XL per risk, AGG et QS. Elle se résume en une estimation des paramètres des distributions envisageables pour 

modéliser les loss ratios ou les sinistres individuels, une sélection des distributions appropriées, une simulation des quantités 

d’intérêt et enfin une application des conditions du traité pour obtenir les pertes cédées à la réassurance. Pour les traités XL, un 

modèle de type cout-fréquence va ainsi être calibré pour chaque traité. Les distributions choisies sont basées sur la théorie des 

valeurs extrêmes, avec notamment des distributions de Pareto, et d’autres types comme les Mixed Erlang. Des distributions par 

morceaux ont également été utilisées afin de modéliser les queues de destruction et donc les événements extrêmes qui impactent 

fortement les pertes liées aux traités XL. Les distributions sont ensuite évaluées et classées afin de sélectionner la distribution la 

plus appropriée. Concernant les lois de fréquence, ces dernières sont sélectionnées en fonction de la valeur du coefficient de 

dispersion du nombre de sinistres à l’ultime parmi la loi Binomiale, la loi de Poisson, et la loi Binomiale Négative. Une méthode 

alternative a également été envisagée pour les traités XL couvrant la LoB property, à savoir une méthode basée sur les courbes 

d’exposition. Cette dernière permet d’obtenir une distribution des récupérations dans les cas où le modèle collectif n’est pas 

satisfaisant, notamment en raison d’un nombre trop faible de sinistres ou de rétentions trop élevées. Cette méthodologie est 

également utilisée pour évaluer les pertes couvertes par les traités SP qui n’étaient pas modélisées auparavant. Concernant les 

traités AGG et QS, les loss ratios à l’ultime seront directement modélisés à l’aide de distributions statistiques. Les conditions des 

traités sont ensuite appliquées aux pertes simulées en tenant compte de potentielles clauses d’indexation ainsi que d’autres 

particularités, comme les loss corridors pour les traités QS.  

 

Figure 3 : Module de modélisation des pertes 
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Enfin, les indicateurs de risque et de profitabilité sont directement dérivés des distributions de recouvrements ou de loss ratios 

résultant du processus de modélisation décrit précédemment. Pour les traités non proportionnels, tels que les traités AGG et XL, 

cela inclut notamment les probabilités de dépassement, les périodes de retour, ainsi que divers indicateurs statistiques relatifs aux 

distributions de pertes. Pour ces types de traités, la prime technique est également un indicateur d‘intérêt dans l’évaluation du 

traité. Cette dernière nécessite le calcul de chargements visant à couvrir le réassureur en cas de pertes extrêmes. Une approche 

basée sur le coût en capital du traité a donc été considérée pour évaluer ces chargements. La méthode de calcul diffère selon que 

le traité soit inclus dans un pool ou non. Si le traité est placé dans un pool, les chargements sont calculés en fonction de la part du 

traité au sein du pool de réassurance selon des métriques telles que la variance, l’écart type ou le quantile. Dans le cas contraire, 

le chargement est basé sur l’impact marginal du traité sur le Solvency Capital Required (SCR) de la branche non-vie d’AXA SA. 

Concernant les traités QS et SP, qui ne requièrent pas le calcul d'une prime technique, nous renvoyons une estimation des pertes 

cédées, du résultat technique net, du coût du capital, des commissions et d'autres variables dépendant des pertes cédées. 

 

Figure 4 : Module de calcul des indicateurs 

Afin d’évaluer la performance de l’outil développé, une comparaison avec les primes de marché a été réalisée pour les traités XL. 

Cette analyse visait à estimer si la méthodologie proposée est fiable et permet d’estimer correctement la prime technique. Les 

conclusions, basées sur un ensemble de 90 traités, montrent que la méthodologie fournit des estimations relativement cohérentes. 

Pour les traités poolés, les écarts constatés sont de l’ordre de 5 %, ce qui reflète une bonne concordance avec le marché. En 

revanche, pour les traités non poolés, la prime technique est sous-estimée d’environ 13 % par rapport aux primes de marché. 
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Figure 5 : Comparaison des primes techniques et primes marchés pour les traités non poolés (droite) et poolés (gauche) 

In fine, cette étude aura permis de proposer une méthodologie de tarification s’appuyant sur les données disponibles applicable à 

l’échelle de l’équipe en proposant une première réponse à la problématique étudiée. En réunissant de manière centralisée un 

ensemble de méthodes et de processus, elle aura ainsi visé à élargir le spectre des traités pouvant être tarifés en fournissant un 

outil opérationnel à cet effet. Cet outil, composé de trois onglets, facilite l'automatisation et la transparence des processus impliqués 

dans l'évaluation des risques liés aux traités, dont la sélection des données, la projection des sinistres à l’ultime, l'ajustement des 

distributions et le calcul des indicateurs relatifs aux traités de réassurance. Conçu pour être interactif, il permet aux utilisateurs 

d'exporter les quantités estimées au cours du processus de modélisation, telles que les paramètres des distributions, les variables 

simulées, et de visualiser les différents indicateurs en fonction des choix de l'utilisateur. En outre, l'outil permet aux utilisateurs 

de spécifier le nombre de simulations et de distributions qu’il souhaite ajuster. 
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Table 1 : Aperçu de l’outil de tarification 

Data Processing panel Modeling panel Pricing panel 
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Executive Summary 

Often referred to as “insurance of insurers,” reinsurance is a risk distribution mechanism where a "ceding company" (an insurer) 

transfers all or part of its insurance liabilities risks to a third-party insurance company, the reinsurer. It takes the form of various 

types of contracts, known as reinsurance treaties. These treaties fall into four main categories: Excess of Loss (XL) per risk or per 

event, Aggregate (AGG), Quota-Share (QS) and Surplus (SP). These treaties enable risks to be transferred on a proportional or 

non-proportional basis. 

As AXA Group's internal reinsurer, Axa Group Ceded Reinsurance (AGCRe) is responsible for managing all the group's 

reinsurance operations. To this end, AGCRe has several treaty management strategies at its disposal: it can choose to accept all 

treaties from entities and act as sole reinsurer, cede them to other reinsurers, or retain only a portion, which it places in a reinsurance 

pool. The figure below illustrates how reinsurance treaties are managed within AGCRe. 

 

Figure 6: Diagram of AXA Group Ceded Re reinsurance commitments  

In preparation for underwriting committees, the Analytics and Pricing team is responsible for providing various indicators relating 

to treaties in order to assess their profitability and risk. To this end, although the team is currently able to evaluate most treaties 

underwritten by AGCRe, around 20% of treaties are not modeled using the internal model, which mainly concerns XL treaties 

placed within reinsurance pools. QS, SP, AGG and certain XL treaties by risk are therefore currently subject to case-by-case 

studies, which tend to be tedious. Furthermore, the modeled treaties are based on AXA Group-wide guidelines and rely on external 

software which restricts the team's control over their modeling process. This dependence also reduces the team's ability to make 

full use of its own databases and prevents it from offering an internal view of the reinsurance treaties underwritten. This situation 

therefore raises the following question and sets the framework for this actuarial thesis: How can AGCRe, through a centralized, 

reliable, flexible, and fully controlled modeling approach, evaluate the risks associated with the largest number of reinsurance 

treaties using internal data available across all cedents and risk classifications? 

By developing a methodology and a tool on R shiny for treaty’s risk assessment, we aim to increase treaty valuation capabilities 

by modeling treaties not included in the internal model scope in an automatic way, while also providing an additional view for 

underwriting committees. However, the study will be limited to non-life reinsurance treaties covering a one-year time horizon and 

will concern four types of reinsurance treaties underwritten by AXA: XL per risk, QS, AGG and SP1. The CAT Line of Business 

 
1 Only for the property LoB 
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(LoB) has not been considered for now, even though the tool is designed to integrate in the future event loss tables issued from 

any CAT models and thus allow per event reinsurance modeling and rating. 

The tool developed and its architecture are based on three main modules, each one corresponding to major aspects of the 

underwriting methodology: a data selection and transformation module, a module for modeling the losses covered by the 

reinsurance treaty, and finally a module for the calculation of the indicators used for underwriting committees. 

When estimating indicators, the first step is to select the databases required for treaty evaluation. Depending on the type of treaty 

to be priced, these databases will differ according to the models employed, which do not bear the same data requirements. We first 

have at our disposal all historical claims developments (paid and case reserves amounts) reported above certain thresholds by all 

AXA entities, related to all kinds of LoBs, and sometimes reaching an historical depth up to 30 years. For XL treaties, the 

individual claims experience is taken into account, while the aggregate claims experience is considered for AGG and QS treaties. 

To estimate the underlying loss experience as accurately as possible, it is necessary to evaluate the ultimate losses, whether 

individually or aggregated. To this end, the Chain Ladder method has been used to estimate the IBNR (Incurred But Not Reported) 

and therefore the ultimate loss amount associated with each claim. For AGG and QS treaties, the ultimate loss ratios will be 

modeled using the premium amounts that falls under the treaty perimeter. Concerning XL treaties, since individual claims 

experience is considered, the number of claims per year is a variable of interest. Given the limits of the purely multiplicative 

nature of Chain Ladder, the Schnieper model was chosen to estimate ultimate claims frequency. An as-if adjustment to take account 

of factors such as inflation was also carried out to adjust individual claim amounts. Finally, the structure of claims payments is 

estimated through a payment pattern for discounting purposes in the calculation of reinsurer’s payments, which may extend over 

several years. 

 

Figure 7: Data selection and transformation modules 

The Monte Carlo method was chosen to model the underlying loss experience because of its flexibility. By providing a loss 

distribution that incorporates the impact of treaty conditions on recoveries, this method makes it possible to calculate a larger 

number of indicators. The methodology considered to model underlying losses is similar for XL per risk, AGG and QS treaties. It 

consists of estimating the parameters of possible distributions to model loss ratios or individual claims, selecting the most 

appropriate distribution, simulating the quantities of interest and, finally, applying the treaty conditions to obtain the losses ceded 

to reinsurance. For XL per risk treaties, a cost-frequency model is calibrated for each treaty. The distributions chosen are based 

on extreme value theory, including Pareto distributions, and others such as Mixed Erlang distributions. Splitted distributions have 
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also been implemented to model distribution tails, and therefore extreme events which have a major impact on losses linked to 

XL treaties. Distributions are then ranked and evaluated to select the most appropriate. Frequency distributions is selected based 

on the dispersion coefficient of the ultimate number of claims among the Binomial distribution, the Poisson distribution and the 

Negative Binomial distribution. An alternative method has also been considered for XL property treaties based on exposure curves. 

The latter makes it possible to obtain a distribution of recoveries in cases where the collective model is unsatisfactory, notably due 

to too few claims or too high retentions. This methodology is also used to estimate ceded losses under a SP treaty, which were not 

previously modeled. For AGG and QS treaties, ultimate loss ratios are directly modeled using statistical distributions. Treaty 

conditions are then applied to the simulated losses, considering potential indexation clauses among other clauses, such as loss 

corridors for QS treaties. 

 

Figure 8: Modeling modules 

Finally, quantitative metrics are directly derived from the recoveries or loss ratios distributions resulting from the previously 

described modeling process. For non-proportional treaties, such as AGG and XL treaties, this includes exceedance probabilities, 

return periods and various statistical indicators related to loss distributions. For these types of treaties, the technical premium is 

also an indicator of interest in treaty valuation. The latter requires the calculation of safety loadings to cover the reinsurer in the 

event of extreme losses. An approach based on the treaty's cost of capital has therefore been considered to evaluate these safety 

loadings. The calculation method differs according to whether the treaty is pooled or not. If the treaty is placed within a pool, 

safety loadings are calculated using the treaty's share within the pool in terms of variance, standard deviation or quantile. 

Otherwise, the safety loading is related to the treaty's marginal impact on the Solvency Capital Required (SCR) of AXA SA's non-

life branch. Considering QS and SP treaties, which do not require the calculation of a technical premium, we carried out the 

simulation of ceded losses, net underwriting result, cost of capital, commissions, and other potential loss dependent features. 
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Figure 9: Pricing modules 

To assess the performance of the developed tool, a comparison was made with market premiums for XL treaties. The aim of this 

analysis was to assess whether the proposed methodology is reliable and enables the technical premium to be estimated 

appropriately. This study, based on a set of 90 treaties, shows that the methodology provides relatively consistent values. Regarding 

pooled treaties, the deviations observed are of the order of 5%, reflecting a good match with the market. On the other hand, for 

non-pooled treaties, the technical premium is underestimated by around 13% compared with market premiums. 

 

Figure 10: Comparison of technical and market premiums for non-pooled (right) and pooled (left) treaties 

Ultimately, this study will have enabled us to propose a pricing methodology based on available data, applicable across the entire 

team and thus offering an initial response to the problem studied. By bringing together a range of methods and processes in a 

centralized manner, we broaden the spectrum of treatments that can be priced, by providing an operational tool for this purpose. 

This tool, composed of three panels, facilitates the automation of processes involved in treaty risk assessment, including data 
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selection, ultimate projection, fitting of distributions and treaty’s indicators calculations. Designed to be interactive, it allows users 

to export estimated quantities during the modeling process, such as distribution fitting parameters, simulated variables, and to plot 

treaty indicators based on the user’s selections. Additionally, the tool enables users to specify the number of simulations and the 

number of fitted distributions.
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Table 2: Overview of the reinsurance pricing tool 

Data Processing panel Modeling panel Pricing panel 
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Glossary 

AMSE: Average Mean Squared Error 

AGCRe: AXA Group Ceded Reinsurance 

AGG: Aggregate 

CDF: Cumulative Distribution Function 

CoC: Cost of Capital 

CPI: Consumer Price Index 

CPPI: Construction Producer Prices Index  

CVM: Cramer Von Misses 

ERD: Expected Reinsurer’s deficit 

GEP: Gross Earned Premium 

GEV: Generalized Extreme Value 

GLR: Gross Loss Ratio 

GPD: Generalized Pareto Distribution 

GWP: Gross Written Premium 

HTE: Heavier Than Exponential 

KS: Kolmogorov-Smirnov 

LoB: Line of Business 

LR: Loss Ratio 

LTE: Lighter Than Exponential 

ME: Mixed Erlang 

MLE: Maximum Likelihood Estimation 

MME: Method of Moments Estimation 

OOP: Object Oriented Programming 

PP: Payment Pattern 

QS: Quota-Share 

RoC: Return on Capital 

SCR: Solvency Capital Required 

SI: Sum Insured 

SP: Surplus 

T&C: Terms and Conditions 

TP: Technical Premium 

ULR: Ultimate Loss Ratio 

VaR: Value at Risk 

XL: Excess of Loss 
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Introduction 

Reinsurance serves as a strategic cornerstone in the insurance industry, enabling companies to access higher levels of risk 

diversification pools and mitigate their exposure to risks while ensuring financial stability. Obligatory reinsurance takes the form 

of various types of contracts, known as reinsurance treaties. These treaties fall into four main categories: Excess of Loss (XL) per 

risk or per event, Aggregate (AGG), Quota-Share (QS) and Surplus (SP). These treaties enable risks to be transferred on a 

proportional or non-proportional basis. 

Following the recent merger between AXA Global Re and AXA SA, AXA Group Ceded Reinsurance (AGCRe) has taken on a 

significant role in managing reinsurance for the entire AXA Group. Acting both as an internal reinsurer and as a purchaser of 

reinsurance on the international market, it plays a vital part in optimizing reinsurance programs and managing the Group's overall 

risk portfolio through reinsurance. Given the growing imperative to retain profitability while arbitrating with risk appetite, a 

detailed and comprehensive approach to modeling reinsurance treaties is essential. The ability to deliver accurate pricing by 

incorporating a wide range of relevant indicators and tailoring evaluations to optimize reinsurance structures is a critical asset for 

meeting AXA's strategic objectives under the constraints of reducing the net result volatility and complying with AXA risk appetite 

limits. In this context, the Analytics & Pricing team is tasked with modeling reinsurance coverages to evaluate the ceded risks 

under reinsurance treaties through the generation of several risk and profitability indicators.  

While existing pricing models within the organization provide some capability in this regard, they are largely based on directives 

established at the group level. As a result, they do not allow AGCRe to have its own perspective on the ceded risks associated with 

underwritten reinsurance treaties. Developing a pricing methodology tailored to the entity’s available data would allow AGCRe 

to diversify its approach and offer a complementary view of ceded risks through reinsurance treaties in addition to market and 

AXA Group perceptions. Moreover, the current models give the entity only limited control over the modeling processes. This lack 

of transparency and flexibility can become problematic when it comes to incorporating modifications, such as new treaty clauses, 

the addition of newly subscribed treaties, or the integration of alternative modeling methods. This issue highlights a key challenge 

explored in this actuarial thesis: the establishment of an own pricing methodology that relies on the entity's data and grants the 

team full ownership of the modeling process, from end to end. Furthermore, the models currently employed within AGCRe 

primarily focus on XL treaties and do not encompass the entirety of Lines of Business (LoBs) or cedents. As a result, approximately 

20% of the treaties underwritten by AXA are not assessed by the internal model and are instead handled on a case-by-case basis 

on demand, which tends to be tedious. This limitation raises a critical second challenge: the need to establish a centralized 

modeling approach for treaties currently excluded from the internal model. 

These issues lead to the formulation of a broader problem statement: How can AGCRe, through a centralized, automated, flexible, 

and fully controlled modeling approach, evaluate the risks associated with the largest number of reinsurance treaties using internal 

data available across all cedents and risk classifications? 

Given the vast possibilities for development, we chose to be pragmatic in choosing the treaties to be studied given operational 

considerations, as well as the choice of models to be implemented. To this end, the study will be limited to non-life reinsurance 

treaties, as life reinsurance treaties constitute less than 3% of AXA's total reinsurance portfolio. In this work, we will try to give a 

first answer to this problem by assessing four types of reinsurance treaties that are partially or not modeled with the internal model 

such as XL per Risk, QS, AGG and SP1 treaties. Treaties within the CAT LoB will not be examined in this paper, as their modeling 

is significantly more complex and falls under the purview of other specialized teams. 

To meet this challenge, the process involved standardizing, centralizing and refining the data needed to evaluate different types of 

reinsurance treaties. It also involved examining feasible existing pricing methods based on the data collected and the specific risk 

and profitability indicators to be calculated in order to identify the most appropriate approach. Depending on the type of treaty 

 
1Only those covering the property LoB 
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and pricing method chosen, some methodologies require risk profiles, while others are based on historical claims, either aggregated 

or individual for instance. Furthermore, the data format had to strike a balance between sufficient granularity to ensure both 

modeling reliability and compatibility between all entities. Determining the necessary transformations to be applied to the data to 

meet the modeling requirements such as ultimate loss calculations, computing moments for the number of claims, or calibrating 

payment patterns as part of the methodology process, represents one of the added values of the project. Additionally, proposing a 

broader variety of modeling methods, including several probability distributions displayed with an automated ranking, as well as 

distributions derived from exposure curves enabling an alternative modeling approach for XL per risk treaties and an initial 

modeling method for previously unmodeled SP treaties, along with corresponding graphs, intermediary datasets and fitting 

statistics  to assess model validity, provides the team with improved control over the modeling process. Furthermore, uniformizing 

the calculation of risk and profitability indicators, as well as incorporating additional risk metrics beyond those currently used by 

the team, are integral components of the study. 

This actuarial work will thus address the problem at hand by presenting a forward-looking pricing method from end to end based 

on statistical models. This methodology has been incorporated and centralized through the entire development of an automated 

and user interactive R shiny app for assessing reinsurance contracts, which is one of the main added values of this work, and part 

of the answer to the question at hand. It was designed for the Analytics & Pricing team and integrates all the necessary data, 

pricing methodologies and processes into a coherent framework, supported by a clear and structured code architecture. The 

proposed tool aims to expand the application scope of pricing methods, to include a wider array of reinsurance treaties while 

ensuring greater flexibility, transparency and the ability to integrate new data from multiple sources, both internal and cedent-

provided. It thus intends to broaden and deepen the analysis of reinsurance treaties within the group while increasing AGCRe’s 

internal pricing capabilities and operational efficiency in treaty evaluation. It also provides an alternative view of the risks 

underwritten, compared with the view based on the internal model and that based on market prices. 

This paper will start with a description of the diverse types of reinsurance treaties and their distinct characteristics. It will then 

detail the necessary data requirements, and the transformations applied to prepare the data for modeling. Subsequently, the 

methodology and steps for modeling the underlying claims covered by reinsurance treaties will be presented. Risk and profitability 

indicators will then be described, followed by a comparison with market premiums for a certain type of treaty to evaluate the 

performance of the pricing tool. 
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1. Reinsurance 

1.1 Definition 

Reinsurance was initiated in France by Colbert in 1668 with the creation of the Compagnie générale des assurances et grosses 

aventures de France, a joint association of insurers and insureds covering the value of goods in the event of loss or damage during 

maritime transport. However, reinsurance was mainly developed in Germany towards the end of the 19th century, fueled by the 

industrial revolution and the growing need for insurance. The founding in 1846 of Kölnische Rück, now known as Gen Re, marked 

the growth of specialized reinsurance firms. Over time, other reinsurance companies emerged, extending their coverage across 

various lines of insurance on a global scale. Today, reinsurance predominantly operates in developed countries, with most 

reinsurance companies based in nations such as Germany, Switzerland, the UK, the USA and France. 

Often referred to as “insurance of insurers,” reinsurance is a risk distribution mechanism where a ceding company (an insurer) 

transfers all or part of its insurance liabilities risks to a third-party insurance company, the reinsurer. This operation is formalized 

through a reinsurance contract or treaty, under which the reinsurer, in exchange for a reinsurance premium, undertakes to 

indemnify the ceding company for covered losses. Reinsurance contracts can vary in format and may have fixed or open-ended 

durations, though most are valid for one year.  

Reinsurance now occupies a significant place in the insurance industry, and its influence continues to grow. Insurance companies 

are progressively leveraging this mechanism due to the numerous benefits it offers. The main advantages for the ceding company 

are: 

• Risk Transfer: By transferring a portion of its risks - particularly those that are highly volatile or less predictable -to a 

reinsurer, the cedent reduces its probability of financial failure. 

• Reduced Capital Requirements: Reinsurance allows insurers to lower their retained risk exposure, resulting in reduced 

regulatory capital requirements for the ceding company. 

• Income Stabilization: Reinsurance helps insurers smooth their financial results by absorbing significant and unexpected 

losses. This reduces the variability of claims payouts and can stabilize cash flows. 

• Enhanced Underwriting Capacity: Some reinsurance treaties such as Quota-Share enable insurers to expand their 

underwriting capacity by compensating for insufficient equity capital, thereby allowing them to take on additional 

policies. 

Reinsurance can take various forms and have specific characteristics. The following section describes these features. 

1.2 Reinsurance characteristics 

1.2.1 Reinsurance types 

Reinsurance can be categorized into three main types:  

• Obligatory reinsurance takes the form of a reinsurance treaty under which the reinsurer must cover all insurance policies 

issued by the ceding company that fall within the scope of the treaty.  

• Facultative reinsurance, in the form of a contract, is negotiated separately for each insurance policy. Ceding companies 

generally purchase facultative reinsurance for individual risks that are not sufficiently covered by their compulsory 

reinsurance treaties. It is called facultative because neither the ceding company nor the reinsurer is forced to accept the 

contract. 

https://fr.wikipedia.org/wiki/Transport_maritime


p. 22 

 

• Facultative/Obligatory reinsurance is a type of reinsurance contract in which the insurer is free to choose which risk 

will be ceded to the reinsurer, as in facultative reinsurance. However, the reinsurer must accept the risk if ceded. 

It is then necessary to determine which risks will be covered by the reinsurance contracts, particularly from a temporal perspective, 

leading to the definition of the coverage period. 

1.2.2 Coverage period 

The period of coverage is the period during which the reinsurer is responsible for claims arising from policies ceded during the 

treaty period of effect. Two types of coverage periods are considered in reinsurance:  

• Under a “Loss Occurring” treaty, the reinsurer covers any claims that occur during the validity period of the treaty, 

regardless of when the underlying insurance contract was issued. For instance, if a Loss Occurring reinsurance treaty 

covers the year 2024, it will cover any claim occurring in 2024, even if the underlying insurance policy was underwritten 

in 2023 or earlier.  

• On the other hand, in a “Risk Attaching” treaty, the reinsurer covers claims associated with policies that are underwritten 

or renewed during the treaty's validity period, regardless of when the claim itself occurs. For example, if a Risk Attaching 

treaty covers the year 2024, the reinsurer will assume all claims related to policies issued or renewed in 2024, even if 

those claims arise in 2025 or beyond.  

1.2.3 Reinsurance treaties 

To meet the diverse coverage needs of insurance companies, reinsurers offer two primary forms of reinsurance: proportional 

reinsurance and non-proportional reinsurance. 

Proportional reinsurance is based on a proportional sharing of the loss between the insurer and the reinsurer. There are two types 

of proportional reinsurance treaties: 

• Quota-Share (QS) 

• Surplus (SP) 

Non-proportional reinsurance, unlike proportional reinsurance, is based on a different mechanism of risk-sharing between the 

reinsurer and the insurer. In non-proportional reinsurance, the reinsurer only intervenes when the insurer's losses exceed a 

predefined threshold, known as the retention or priority, up to a certain limit. In exchange for this coverage, the insurer pays a 

fixed annual premium. There are two types of proportional reinsurance treaties: 

• Excess of Loss (XL) 

• Stop Loss or Aggregate (AGG) 

The figure below summarizes the different reinsurance types: 
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Figure 11: Classification of reinsurance treaties 

Let us examine the different types of treaties. 

1.2.3.1 Proportional treaties 

1.2.3.1.1 Quota-Share (QS) 

Under a QS treaty, the reinsurer agrees to cover a percentage of the ceding company's claims portfolio, based on a specified cession 

rate. In exchange, the reinsurer receives a proportional share of the premiums collected by the ceding company, along with a 

commission fee. This type of reinsurance applies to all risks within the cedent’s portfolio, regardless of the sum insured. QS 

treaties are often used when companies are setting up to increase their underwriting capacity and gain experience in a new market 

with limited risk. 

Mathematically, if one considers a QS reinsurance treaty with: 

• A cession rate 𝑐 

• The annual premium amount collected by the insurer 𝑃  

• The annual claim amount attached to the treaty 𝑆  

Then: 

• (1 − 𝑐)𝑃 corresponds to premium retained by the ceding company while the reinsurer receives an amount of premiums 

equal to 𝑐 ∗ 𝑃 

• (1 − 𝑐)𝑆 corresponds to the claim amount retained by the ceding company while the reinsurer is granted with an amount 

of claims equal to 𝑐 ∗ 𝑆 

The following figure presents the amounts ceded to reinsurance in the case of a QS treaty with a 40% cession rate. 
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Figure 12: Comparison of retained/ceded premium and claim amounts for a QS 40% 

A major advantage of quota-share reinsurance is that it simplifies the insurer’s management and offers the opportunity to diversify 

its activities. This form of reinsurance also plays a key role in protecting the insurer's equity by (virtually) increasing it. Indeed, 

in a simplified way, the probability that the insurer will not go bankrupt can be written as ℙ(𝑤 + 𝑃 − 𝑆 > 0) where 𝑤 corresponds 

to the insurer's equity. If the ceding company has subscribed a QS treaty with a cession rate 𝑐, this probability becomes: 

ℙ(𝑤 + (1 − 𝑐)𝑃 − (1 − 𝑐)𝑆 > 0) =  ℙ (
𝑤

1 − 𝑐
+ 𝑃 − 𝑆 > 0) ≥ ℙ(𝑤 + 𝑃 − 𝑆 > 0) 

However, this reinsurance type has its drawbacks, particularly in terms of ceded premiums, which can sometimes be significant. 

This can lead to a loss of potential profitability for the ceding company, as it may be transferring risks that could have been 

assumed without external help. Additionally, because the reinsurer’s share of premiums and claims is proportional, it does not 

impact the ceding company’s loss ratio. The ceding company remains exposed to fluctuations in claims frequency and severity, 

which can still affect its financial stability and profitability. 

1.2.3.1.2 Surplus (SP) 

A second type of proportional reinsurance contract is the surplus treaty. It is a proportional reinsurance agreement in which the 

ceding company and the reinsurer share both claims and premiums based on a cession rate. However, the key difference between 

SP and QS lies in the definition of the cession rate, which is not explicitly fixed in SP treaties. Furthermore, surplus reinsurance 

is generally applied on a certain risk category, or group of risks basis within a particular branch.  

In this type of contract, the ceding company defines a retention amount 𝑅 and a capacity 𝐶, which is the maximum amount that 

the reinsurer is willing to insure. The reinsurer assumes claims and collects premiums from the cedent based on an implicit cession 

rate 𝑐, which is determined by the sum insured, the retention, and the capacity. 

Mathematically, by noting 𝑆𝐼𝑖 the sum insured of the risk 𝑖, 𝑅 the retention, 𝑐𝑖 the cession rate and 𝐶 capacity, the cession rate 𝑐𝑖 

is:  

𝑐𝑖 = 
min (max(0, 𝑆𝐼𝑖 − 𝑅) , 𝐶)

𝑆𝐼𝑖
  

The premiums and claims associated with the risk will then be shared between the ceding company and the reinsurer according to 

this cession rate. 
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Figure 13: Cession rate evolution of a SP treaty 

Figure 13 exhibits the evolution of the cession rate for a surplus treaty with 200 000 € retention and 500 000 € capacity. As the 

sum insured rises from 200 000 € towards 700 000 €, the cession rate increases sharply. For a sum insured of 700 000 €, the 

cession rate reaches its peak at 70%. After 700 000 €, the cession rate begins to decrease slowly: the ceding company retains a 

higher portion of the risk, and the reinsurer’s share of the risk becomes proportionally smaller.  

1.2.3.2 Non-proportional treaties 

1.2.3.2.1 Excess of Loss (XL) 

Excess of Loss treaties trigger the reinsurer's intervention when losses surpass a predetermined amount, known as the retention, 

and continue up to a specified limit, which is the maximum commitment of the reinsurer in the event of a claim. There are two 

main types of Excess of Loss treaties: 

• Excess of Loss per risk: the reinsurer intervenes when a claim exceeds the retention threshold. This type of coverage is 

typically used for losses tied to a single risk, such as a fire affecting one insured property. 

• Excess of Loss per event: this kind of treaty allows for the aggregation of a generally large number of claims caused by 

the same event. For example, in the case of a natural disaster, multiple claims can be accumulated. The reinsurer 

intervenes when the total amount of these claims exceeds the retention level. 

XL treaties are particularly useful for protecting against catastrophic losses, as only significant claims are likely to exceed the 

retention and trigger the reinsurer's coverage.  

By noting 𝐿 the limit, 𝑅 the retention, 𝑋 the amount declared by the cedent, the ceded amount 𝐶𝑟𝑒𝑖𝑛𝑠 to the reinsurer for an XL 

treaty 𝐿 𝑥𝑠 𝑅 will be:  

𝐶𝑟𝑒𝑖𝑛𝑠 = min((𝑋 − 𝑅)+, 𝐿) 

For example, the Figure 14 points out the allocation of losses between the cedent and the reinsurer for an XL 100 € M 𝑥𝑠 50 € M. 

Regarding losses below 50 € M, the cedent bears the entire loss amount, as this falls within the retention. Concerning losses 

between 50 € M and 150 € M, the cedent covers the first 50 € M, while the reinsurer assumes responsibility for the portion above 

50 € M, up to a maximum of 100 € M. In cases where losses exceed 150 € M, the reinsurer still only covers 100 € M (its maximum 

liability under the treaty), and the cedent is responsible for the retention (50 € M) and any amount exceeding 150 € M. For example, 

a 200 € M loss would result in the cedent paying 50 € M (retention) plus 50 € M (excess beyond the reinsured layer), while the 

reinsurer pays 100 € M. 
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Figure 14: Example of an XL treaty 100 € M xs 50 € M  

This type of treaty often includes additional clauses. The main ones are the Annual Aggregate Limit (AAL) and the Annual 

Aggregate Deductible (AAD). The AAL is the reinsurer’s annual maximum coverage obligation towards the cedent. The AAL 

thus offers financial protection to the reinsurer by limiting its maximum exposure. The AAD is the total aggregate amount of 

losses within the layer that the ceding company must retain before the reinsurer intervenes. Once the insurer's total losses exceed 

the AAD, the reinsurer begins to pay for the claims, up to the AAL. 

Another component frequently found in XL treaties is the reinstatement premium: when the amount of claims borne by the 

reinsurer consume the capacity, it is possible to "reinstate" the capacity through the payment of a so-called reinstatement premium. 

The number of reinstatements is defined contractually and is noted as "number of reinstatement@rate", where the “rate” designates 

the reinstatement premium price. The reinstatement premium is paid as soon as a claim consumes part of the scope, in proportion 

to the amount of the scope consumed, sometimes including a time factor based on the number of days remaining until the end of 

the contract, which reduces the reinstatement premium. For instance, let us consider a 100 € M 𝑥𝑠 50 € M treaty with an upfront 

premium of 50 € M and the following reinstatement conditions: 1@50%, 2@100%. Let us assume the annual recovery amount is 

175 M €. Since the treaty capacity has been entirely consumed, the cost of the first reinstatement is 50% of the treaty premium, 

amounting to 25 € M. The second reinstatement costs 100% of the treaty premium, prorated to the remaining capital to be reinstated 

(75/100), which results in 75 €M. Consequently, the cedent will pay an upfront premium of 50 € M and a total of 100 € M in 

reinstatement premiums. 

XL treaties may also contain indexation clauses. An indexation clause manages the effect of inflation by adjusting the retention 

and limit so that the inflation effect is equally shared between the cedent and the reinsurer. This clause helps maintain the relevance 

of retention and limit during periods of economic fluctuation. The indexation clause therefore specifies a reference index, which 

may be a consumer price index (CPI), a construction cost index, or any other relevant index linked to the covered risk. The clause 

also defines how retention and limit adjustments are made. For example, let us take an XL treaty per risk 100 € M 𝑥𝑠 100 € M. In 

the case where the indexation clause is contractually based on a given country CPI issued by a specified institution, and that index 

increases by, say, 2% over a given period, the retention and limit could be increased by 2%. In this project, by denoting 𝑋𝑘,𝑡 the 

payment of claim 𝑘 at time 𝑡, 𝑅 the retention and 𝐿 the limit of the treaty, 𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛,𝑡 the deflating factor for payment made at 

time 𝑡, the indexed limit 𝐿𝑘,𝑇
𝑖𝑛𝑑𝑒𝑥𝑒𝑑 and the indexed retention 𝑅𝑘,𝑇

𝑖𝑛𝑑𝑒𝑥𝑒𝑑  for the claim 𝑘 at time 𝑇 are calculated as follows: 

𝐿𝑘,𝑇
𝑖𝑛𝑑𝑒𝑥𝑒𝑑 = 𝐿 ∗

∑ 𝑋𝑘,𝑡
𝑇
𝑡=1

∑ 𝑋𝑘,𝑡
𝑇
𝑡=1 ∗ 𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛,𝑡

 

𝑅𝑘,𝑇
𝑖𝑛𝑑𝑒𝑥𝑒𝑑 = 𝑅 ∗

∑ 𝑋𝑘,𝑡
𝑇
𝑡=1

∑ 𝑋𝑘,𝑡
𝑇
𝑡=1 ∗ 𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛,𝑡
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 A concrete application of the indexation clause an XL treaty will be provided in section 5.1.3.1. 

1.2.3.2.2 Stop Loss or Aggregate 

Stop-loss, or aggregate, is a form of non-proportional reinsurance. This type of treaty covers all claims whose aggregated amount 

exceeds a retention threshold, up to a limit. Unlike XL treaties, where retentions and limits are defined in financial terms, a stop-

loss treaty uses the loss ratio - claims as a percentage of earned premiums - to define its retention and limit. If, at the end of the 

treaty period, the cedent's loss ratio exceeds the retention, the reinsurer intervenes to cover the excess losses, reducing the cedent's 

loss ratio back to the retention level, but only up to the maximum limit established by the treaty’s terms and conditions. 

Mathematically, by noting 𝑃 the covered portfolio premium, 𝑅% the retention and 𝐿% the limit (as a percentage of 𝑃), 𝑆 the annual 

loss experience, the amount paid by the reinsurer underwriting an aggregate treaty 𝐿% 𝑥𝑠 𝑅% will be: 

𝐶𝑟𝑒𝑖𝑛𝑠 = 𝑃 ∗ min (𝐿%, max (
𝑆

𝑃
− 𝑅%, 0)) 

For example, let us assume that an insurer has taken out a stop-loss 50% 𝑥𝑠 110%. The insurer's premiums for the year is 100 € 

M, and the insurer's loss ratio is 140%, meaning the claims incurred total 140 € M. Under the terms of the treaty, the reinsurer is 

responsible for covering the portion of the loss ratio that exceeds the 110% retention point. Therefore, the reinsurer will cover the 

difference between the 140% loss ratio and the 110% retention, which is 30%. As a result, the reinsurer will pay 30 € M, effectively 

reducing the cedent's loss ratio from 140% to 110%. 

Stop-Loss enables smoother results and stabilize annual results as other forms of reinsurance, but it is mainly used to hedge against 

frequency risk due to its aggregate nature. For instance, in the case of storms, although each individual storm may not result in 

catastrophic losses, the cumulative loss experience of storms over a year could lead to significant losses. In this case, stop-loss 

comes into play to stabilize annual results by covering excess losses over the set threshold. 

 

The characteristics of reinsurance and the various forms it can take having been described, let us now present the objective of the 

study and the context in which it took place.  
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2. Context of the study 

2.1 AXA Group Ceded Reinsurance 

AXA is a French insurance company founded in 1816 under the name Mutuelle de l'Assurance contre l'Incendie. AXA is one of 

the world’s largest insurance companies with over 94 million customers worldwide, and total revenue reaching 102.7 € billion as 

of December 31, 2023.  

AXA’s reinsurance operations are centralized through AXA Group Ceded Reinsurance (AGCRe), which resulted from the recent 

merger between the former AXA Global Re entity and AXA’s holding company AXA SA. The primary responsibilities of AXA 

Group Ceded Reinsurance include: 

• Defining the AXA Group's reinsurance strategy. 

• Analyzing risks within the Group's insurance portfolios. 

• Protecting the balance sheets of AXA entities. 

• Ensuring the security of the Group’s insurance operations. 

• Implementing solutions to optimize internal capacities and transfer risks to external markets. 

To do so, AXA Group Ceded Reinsurance functions both as an internal reinsurer for all AXA Group entities and as a buyer of 

reinsurance on the global market.  

At the operational level, when a reinsurance treaty needs to be underwritten or renewed for one of its entities, AGCRe employs 

various mechanisms: 

• Back-to-back reinsurance: The risks underwritten by AGCRe are transferred to the external reinsurance market without 

retention.  

• Own funds reinsurance: AGCRe assumes full responsibility for the risks and obligations associated with the reinsurance 

treaty. It acts as the sole reinsurer for the treaty, taking on all the associated risks without transferring them to external 

reinsurers. 

• Reinsurance Pooling: With reinsurance pooling, a portion of the treaty is reinsured by AGCRe, while the remaining 

portion is placed into a reinsurance pool. This pooling operation increases AGCRe’s capacity to cover risks it might not 

be able to assume individually. AXA Group Ceded Reinsurance’s pools are covered by external reinsurers through 

“Group covers” reinsurance treaties. The results of the pools are also shared with ceding entities through QS treaties.  

The figure below presents a schematic representation of the reinsurance process within AGCRe. 
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Figure 15: Diagram of AGCRe commitments  

The reinsurance treaties detained by AGCRe concern six major lines of business, which are the six "Lines of Business" (LoB) of 

the reinsured insurance policies: 

• Property: Property LoB covers all insurance policies related to property-related risks, such as fire, theft, and certain 

types of weather damage.  

• Motor Third Party Liability (MTPL): MTPL LoB groups together reinsurance treaties whose underlying insurance 

policies protect both the owner and driver of a vehicle against third-party liability claims in the event of damage caused 

by the vehicle. It can also offer protection against vehicle theft and damage caused by events other than traffic accidents. 

• General Third-Party Liability (GPTL): GTPL LoB concerns general liability insurance policies covering claims or 

damage imposed to life, health or property of third parties because of events related to the insured’s activities. 

• Marine: Marine LoB covers insurance for physical loss or damage related to maritime and transport activities. 

• Life: Life LoB encompasses reinsurance treaties covering life insurance policies which are designed to provide financial 

security to policyholders' beneficiaries in the event of death, critical illness, disability, etc. 

• Cyber:  Cyber LoB focuses on reinsurance treaties for cyber insurance policies. These policies protect against risks like 

data breaches, cyberattacks, and other digital threats that could lead to economic loss.  

2.2 Project objective and structure 

To support its operations, AGCRe needs to accurately assess the reinsurance treaties it manages. This task falls to the Analytics & 

Pricing team, which is responsible for modeling reinsurance treaties and assessing their profitability through the generation of 

several indicators. However, the current models used by the team to assess reinsurance treaties are calibrated at group level. As a 

result, these models often lack flexibility and transparency concerning the modeling process and do not allow AGCRe to have an 

internal vision, based on their own data and independent of group guidelines. Furthermore, these models are not capable of 

modeling all types of treaties and focus mainly on pooled XL treaties and do not encompass all LoBs or cedents, leaving SP, QS 

and AGG treaties unmodeled by the internal model. In all, around 20% of reinsurance treaties are not modeled, requiring case-by-

case studies. The models are also difficult to customize, making it difficult to effectively consider new treaties or to adapt treaty 

conditions to the specific needs of AXA entities.  
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Given AXA's strategic goal of minimizing ceded premium and ceded margin while reducing the net result volatility and complying 

with AXA Risk Appetite limit, developing an internal reinsurance pricing tool based on internal data which could increase the 

scope of analyzed treaties and provide the entity with an internal opinion on their treaties is of great interest. It would thus respond 

to the problem at hand in this paper which is: How can AGCRe, through a centralized, reliable, flexible, and fully controlled 

modeling approach, evaluate the risks associated with reinsurance treaties using internal data available across all cedents and risk 

classifications?  

In this work, we will try to give a first answer to this problem by assessing four types of reinsurance treaties: XL per Risk, QS, 

AGG and SP1 treaties. The study will be limited to non-life reinsurance treaties, as life reinsurance treaties constitute less than 3% 

of AXA's total reinsurance portfolio and were not considered as a priority. Additionally, treaties within the CAT LoB will not be 

examined, as their modeling is significantly more complex and falls under the purview of other specialized teams. However, the 

tool is aimed at ultimately encompassing life and CAT modeling through the integration of Event Loss Tables provided by the risk 

management. Furthermore, only one-year horizon reinsurance treaties will be considered.  

To develop the pricing methodologies forming the basis of the pricing tool, several key steps were undertaken: 

1. Data Selection and Transformation  

The first step involved identifying all the data required for quantifying the risk transferred under reinsurance treaties. 

Since each treaty type has distinct data requirements, an inventory of the available databases and the specific data needs 

for each treaty type was conducted. Subsequently, the necessary operations to adapt these datasets for modeling were 

defined for each type of treaty, with for instance the assessment of the ultimate loss. This step is particularly important 

and represents one of the key value-added features of the tool, as it centralizes and formats all data necessary for treaty 

evaluation while allowing users to add new data over time. Moreover, incorporating the estimation of the ultimate loss 

within the tool is a new development for the Analytics and Pricing team, as they are not usually responsible for this task. 

This addition gives them direct control over the estimation process, which could be improved by working with the 

reserving team. 

2. Claims Modeling 

Evaluating reinsurance treaties necessitates modeling the underlying claims to estimate future losses associated with the 

treaty. Loss modeling differs based on the treaty type and its specific characteristics. For instance, in the case of QS or 

AGG treaties, which are not modeled within the internal model, the focus will be on modeling annual loss ratios. 

Conversely, for XL (respectively SP) treaties, one will focus on the annual recoveries (respectively annual ceded losses) 

modeling. This part serves as the cornerstone of the pricing tool, where several pricing methodologies were explored. 

These include a frequency-severity model utilizing a broader range of statistical distributions, and the development of a 

ranking process to identify the most suitable distribution, as well as an exposure curve-based methodology inspired by 

(Mata, Fannin, & Verheyen, 2002) for SP and XL treaties within the property LoB. 

3. Pricing and Indicator Calculation  

This part is responsible for the final pricing of the reinsurance treaty as it computes risk and profitability indicators for 

overall reinsurance evaluation. It centralizes all indicators calculated for underwriting committees in addition to cost of 

capital indicators. 

These steps formed the foundation of the methodology conceptualization and guided the development of the tool's structure. The 

architecture of the pricing tool was designed based on these stages, easing its development. Throughout this work, the pricing 

methodology will be demonstrated through the analysis of reinsurance treaties. An initial overview of the tool's inputs, outputs, 

processes and flows to clarify its structure and the developed methodology is presented below.

 
1Only those covering the property LoB 
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Figure 16: Overview of the reinsurance pricing tool architecture  



p. 32 

 

3. Databases description 

To address our problem statement, it is first necessary to identify the data required for pricing each treaty and the transformations 

that need to be applied to it for modeling purposes. For the sake of reproducibility and future additions, which is part of our goal, 

each of the databases defined below was elaborated with the objective of creating a standardized data structure. This structure 

could later be provided to entities, enabling them to supply data if AGCRe’s historical data is insufficient to reliably quantify the 

risk associated with the treaty the entity wishes to underwrite. Furthermore, the databases were designed so that all entities could 

complete the required information within the datasets, ensuring no entity is unable to fill in the necessary details. Thus, this part 

of the actuarial thesis will focus on describing the various databases used for evaluating the diverse reinsurance treaties, as well 

as the operations applied to obtain the necessary datasets for modeling. 

3.1 Reinsurance Terms and Conditions (T&C)  

To assess risks linked to a reinsurance treaty, one needs to identify which information about the evaluated treaties should be 

retained or added. To achieve this, the “Reinsurance T&C” database was formed based on AGCRe's internal database, retaining 

only the columns essential for treaty pricing and incorporating additional columns required for this purpose. The database serves 

as a reference for treaty details and contains, among other things, all reinsurance treaties underwritten by AGCRe in 2024. 

Additionally, it is designed to be updated with new treaties, whether they are treaties underwritten for 2025 or new ones that the 

Analytics & Pricing team intends to study. The variables in this database will be used throughout the treaty pricing process. The 

table below lists the variables included in the reinsurance T&C database:    

Table 3: List of variables - reinsurance T&C database 

Variable ID Description 

PROGRAM Reinsurance program name 

ID Unique ID of the reinsurance treaty 

TREATY Name of the treaty 

COUNTRY Name of the country 

COUNTRY_CODE Country alpha 3 code 

CEDENT Cedent(s) covered by the treaty 

RISK_CLASSIFICATION Risk(s) covered by the treaty 

LOB Line of Business 

ATTACHING_TYPE Attaching type: Loss Occurring or Risk Attaching 

REINSURANCE_TYPE Reinsurance type (proportional or non-proportional) 

TREATY_TYPE Treaty type (XL, QS, AGG, SP) 

PER_EVENT Binary variable (only for XL treaty): 1 if the treaty is an XL per event, 0 otherwise 

NB_LAYERS Reinsurance program number of layers 

TREATY_LAYER_NR Treaty layer within the reinsurance program 

POOLED Binary variable: 0 if the treaty is not pooled, 1 if it is pooled 

POOL Name of the pool 

POOL_SHARE Pool share rate 

ACCEPTED_SHARE Retention share rate 

REINSTATEMENTS Reinstatement conditions 

CURRENCY Currency code in which the treaty is issued 

RETENTION Retention (amount or percentage) 

LIMIT Retention (amount or percentage) 
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AAD Annual Aggregate Deductible amount 

AAL Annual Aggregate Limit amount 

INDEXATION_CLAUSE Binary variable: 1 if the treaty has an indexation clause, 0 otherwise 

INDEXATION_CLAUSE_THRESHOLD Indexation clause threshold 

INDEXATION_CLAUSE_INFLATION_RATE Indexation clause rate 

INDEXATION_CLAUSE_INDEX Index used for the indexation clause 

CESSION_RATE Cession rate (only for QS treaties) 

COMMISSION_RATE Commission rate (if fixed commission) 

SLIDING_SCALE_LR_UPPER_BOUND Upper bound for loss ratio (if sliding scale commission) 

SLIDING_SCALE_LR_LOWER_BOUND Lower bound for loss ratio (if sliding scale commission) 

SLIDING_SCALE_COMMISSION_LOWER_BOUND Commission rate lower bound (if sliding scale commission) 

SLIDING_SCALE_COMMISSION_UPPER_BOUND Commission scale rate lower bound (if sliding scale commission) 

LOSS_CORRIDOR Binary variable: 1 if the treaty has a loss corridor, 0 otherwise 

LOSS_CORRIDOR_LR_LOWER_BOUND Loss corridor lower bound (if loss corridor) 

LOSS_CORRIDOR_LR_UPPER_BOUND Loss corridor upper bound (if loss corridor) 

TARGET_MARGIN Treaty’s target margin rate 

PROFIT_SHARING Treaty’s profit sharing 

PRICING_METHOD Pricing methodology: Exposure Pricing or Experience Pricing 

INURING_CESSION_RATE Inuring cession rate to apply on covered claims 

EXPERIENCE_PRICING_FREQ_RISK_DRIVER Selected exposure measure 

DISCOUNT_RATE Discount rate to use 

EXPOSURE_CURVE Selected exposure curve 

3.2 Historical individual claims  

To accurately quantify the risk associated to the reinsurance treaty, it is essential to analyze and model the underlying loss 

experience of the reinsurance treaty. Before diving into the details of the historical claims database, let us define some insurance 

characteristics that are crucial for understanding the elements of the database. 

With the inverted production cycle, an insurer collects premiums from clients before fully knowing the ultimate cost of the 

insurance policy or contract: the insurer provides a guarantee without knowing the exact cost at the time of sale. This uncertainty 

creates a regulatory obligation for the insurer to ensure it can meet its future obligations, which leads the insurer to set aside 

technical reserves at the end of each budget year. These reserves represent the estimated amount of future liabilities that the insurer 

must cover. In non-life insurance, which is the scope of this project, there are two main technical reserves:  

• Unearned premiums reserves: The reserves formed must correspond to the premium of the policy pro rata temporis the 

duration of the remaining guarantee. 

• Outstanding claims reserves: This is a type of technical reserve designed to quantify and provide for commitments 

relating to insurance losses that have occurred but not yet been settled. 

Considering AGCRe’s activities, outstanding claims reserves are more important than unearned premium reserves since most 

reinsurance treaties are taken out on January 1 and cover an annual period. Thus, only outstanding claim reserve will be considered 

in this reinsurance pricing tool development. 

Concerning the outstanding claims reserves, they are composed of two main quantities: 

• Case reserves: This is a case-by-case estimate of what remains to be paid by the insurer for each claim.  

• IBNR (Incurred But Not Reported) reserves: This technical reserve corresponds to the sum of the IBNYR 

(Incurred But Not Yet Reported) provision, intended to cover claims already incurred but not yet reported at the 

balance sheet date, and the IBNER (Incurred But Not Enough Reported) provision, intended to cover claims already 
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incurred and reported, but for which the amount communicated may be insufficient. The IBNER and IBNYR are 

evaluated by statistical methods for a set of contracts. 

 

Figure 17: Overview of outstanding claims reserves 

When a claim occurs over a certain threshold depending on the coverage scope, ceding companies provide AGCRe with the 

following information: the cumulative amount paid, which represents the total amount settled by the ceding company to its 

policyholders, and the corresponding case reserves. The combination of paid claims and case reserves constitutes the claims 

incurred. Additionally, a range of variables offering a detailed description of the incurred claims is provided. These variables cover 

various aspects, including financial, geographical, contractual, and descriptive information. All this data is then stored in an 

internal database, which contains claims records from 1964 to 2024. 

This database has been processed by removing outliers, duplicates, claims with missing values or incoherent ones, and keeping, 

for a given development year and claim, only the most recent evaluations to ensure that there is only one data point per claim and 

development year. Additionally, only claims with an attachment year (i.e., the year of the accident or the underwriting year) from 

1995 onwards were saved to ensure the inclusion of claims with sufficient representativeness. The variables used are detailed 

below:  

Table 4: List of variables - individual historical claims database 

Variable ID Description 

CEDENT Cedent 

RISK_CLASSIFICATION Risk classification of the claim 

LOB Line of Business 

CLAIM_ID Unique ID of the claim 

CURRENCY Currency 

OCCURENCE_DATE Claim occurrence date 

OCCURENCE_YEAR Claim accident year 

EVALUATION_DATE Claim evaluation date 

EVALUATION_YEAR Claim evaluation year 

ATTACHMENT_YEAR Claim attachment year 

ATTACHMENT_YEAR_TYPE Type of attachment: Underwriting year or Accident year 

DEVELOPMENT_YEAR Development year 

INURING_CESSION_RATE_TO_APPLY Inuring cession rate to apply 

CLAIM_PAID_FGU_CUMULATIVE_AMOUNT Claim paid cumulative amount (FGU) 

CLAIM_CASE_RESERVES_FGU_AMOUNT Case reserves amount (FGU) 

CLAIM_INCURRED_FGU_CUMULATIVE_AMOUNT Claim incurred cumulative amount (FGU) 
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This database of 211 306 rows contains approximately 58 640 claims, covering a total of 57 cedents and 80 risk classifications. 

The distribution of the total number of claims per year is given in the Figure 18. 

 

Figure 18: Distribution of the number of historical claims per year – historical individual claims 

In the historical individual claims database, FGU stands for "From Ground Up". It refers to the gross amount (paid or provisioned) 

of a claim, i.e., the total losses associated with that claim, before adjustments and restatements related to underlying reinsurance 

treaties. It therefore represents the gross loss of a given claim. The inuring rate refers to the percentage applied to the total amount 

of claims (including paid and provisioned amounts) to account for amount reduction due to prior proportional reinsurance treaties. 

It could thus represent the cession rate of an underlying QS or SP treaty.  

The attachment year variable corresponds to the year in which the claim occurred, or the year in which the underlying insurance 

contract was underwritten. This variable is essential for filtering claims according to the way the treaty accounts for claims covered 

by the reinsurance treaty (Risk Attaching or Loss occurring).  

3.3 Historical aggregated claims  

When pricing AGG or QS contracts, the reinsurer focuses on the underlying aggregated claims experience rather than the 

distribution of individual claims. Therefore, one should analyze the underlying aggregated claims experience. To this end, a 

database containing all the historical claims data provided by ceding companies to AGCRe was constructed. It is derived from the 

historical individual claims database by aggregating amounts per year of attachment, type of attachment, and development year. 

This dataset is made up of 53 390 rows, encompassing 57 cedents and 80 risk classifications. The data specification is as follows: 

Table 5: List of variables - historical aggregated clams database 

Variable ID Description 

CEDENT Cedent 

RISK_CLASSIFICATION Risk classification of the claim 

LOB Line of Business 

CURRENCY Currency 

ATTACHMENT_YEAR Claim attachment year 

ATTACHMENT_YEAR_TYPE Type of attachment: Underwriting year or Accident year 

DEVELOPMENT_YEAR Development year 
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INURING_CESSION_RATE_TO_APPLY Inuring cession to apply 

AGGREGATE_CLAIM_PAID _FGU_CUMULATIVE_AMOUNT Paid cumulative amount during the development year (FGU) 

AGGREGATE_CLAIM_CASE_RESERVES_FGU_AMOUNT Case reserves amount for the attachment year (FGU) 

AGGREGATE_CLAIM_INCURRED_FGU_CUMULATIVE_AMOUNT Aggregate incurred cumulative amount of the attachment year (FGU) 

3.4 Historical exposure 

When pricing a reinsurance treaty, we will also consider the underlying exposure of the cedent covered by the treaty. Indeed, 

changes in exposure affect the number of claims experienced by the cedent, as well as their severity, and therefore the reinsurer's 

potential total losses. It was therefore required to create such a data structure and select the variables it should contain, so that the 

pricing method could be as accurate as possible. The variables composing the pricing database are listed below: 

Table 6: List of variables - historical exposure database 

Variable ID Description 

CEDENT Cedent 

RISK_CLASSIFICATION Risk classification 

CURRENCY Currency 

YEAR Year 

GROSS_WRITTEN_PREMIUM Gross Written Premium amount 

GROSS_EARNED_PREMIUM Gross Earned Premium amount 

SUM_INSURED Sum Insured amount 

NB_RISKS Number of risks 

 

The term "Gross Written Premium" (GWP) is used to designate the total sum of insurance premiums that an insurance company 

has underwritten (or written) over a given period, usually one year, before any deductions. It thus corresponds to the total amount 

of premiums that customers agree to pay for insurance policies issued by the insurer. Conversely, Gross Earned Premium (GEP) 

represents the portion of the insurance premium that an insurer has earned over a given period. 

Regarding its construction, this dataset was created using the exposure of the entities covered by AGCRe from 1995 to 2024. Only 

cedents and classifications for which at least one of the exposure columns (GEP, GWP, Number of risks, or SI) is non-empty 

across the years covered were included. In cases where data was not available for all years, the closest known value in time was 

used to fill the missing lines. Moreover, since GWP values could not be obtained, they were assumed to be equal to the GEP 

values. It ultimately comprises 14 291 lines with 55 risk classifications and 30 cedents.  

3.5 Risk profile  

The risk profile of ceding companies is also considered within the developped pricing process. A risk profile provides a snapshot 

of an insurance portfolio, categorizing risks into different ranges based on their exposure value. Each range is defined by its 

minimal exposure and maximal exposure. The number of risks per range indicates how many individual risks or insurance policies 

are included in each exposure range. In this actuarial project, risk profiles will be used for pricing XL per risk and SP treaties, 

specifically for the property Line of Business (LoB). Ideally, the database would include risk profiles for 2025. However, due to 

the unavailability of 2025 data, only the 2024 risk profiles will be used. After filtering, the risk profile database includes 3 risk 

classifications within the property LoB (commercial, industrial, and residential) and 15 cedents. The key variables selected for 

constructing the risk profile are as follows: 
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Table 7: List of variables - risk profile database 

Variable ID Description 

YEAR Year 

CEDENT Cedent 

RISK_CLASSIFICATION Risk classification 

CURRENCY Claim accident year 

RANGE_MIN Minimal SI value 

RANGE_MAX Maximal SI value 

NB_RISKS Number of risks within the range 

SUM_INSURED SI 

GROSS_WRITTEN_PREMIUM Total GWP amount within the range 

GROSS_EARNED_PREMIUM Total GEP amount within the range 

BUDGETED_LOSS_RATIO Budgeted LR of the range 

SUM_INSURED_MEAN SI mean within the range 

SUM_INSURED_VARIANCE SI variance within the range 

3.6 Pricing data 

During the calculation of the indicators, we will need different variables coming from various sources. These variables will be 

explained in detail threw the part 6. The table below provides a list of these variables and a brief description of each one: 

Table 8: List of data – pricing data 

Variable Description 

Tax rates Various tax rates representing tax on benefits, C3S, CVAE, ACPR fees, etc. 

SCR values AXA SA’s SCR of the premium, reserve and CAT modules. The SCR is a 

Solvency II concept that will be introduced in detail later. 

Coverage ratio Coverage ratio defined as the ratio AXA SA SCR to AXA SA actual capital. 

Cost of capital rate Return on investment expected by the company's shareholders. This concept will 

be developed later. 

Marginal impact rate Mmarginal impact on the SCR reserve and operational. 

Underwriting expenses Typical underwriting fee. 

Durations Duration of the different LoBs. 

Transmission factors Transmission factors account for diversification effects between AGCRe pools 

and the SCR of AXA SA.  

Solvency II premium and reserve risks covariances 

 

Premium and Reserves risks covariances as specified by Solvency 2 regulatory 

framework in the context of Premium and Reserves Risks estimation through 

defined standard formulas. 

Modeled results and recoveries for pooled treaties Monte Carlo simulated distributions (Remetrica software) of all AXA SA 

Reinsurance Pools (Property per risk & per event, Liability, Motor, Marine, and 

Cyber) underwriting net profits, and all pooled individual treaties. 

3.7 Other databases 

During this project, other data structures were handled to support the modeling needs, including an index database and an exchange 

rate database. The index database contains the evolution of the Consumer Price Index (CPI) and the Construction Producer Prices 

Index (CPPI) from 1954 to 2054 for all countries covered by the reinsurance treaties within the AGCRe portfolio. Based on the 

World Economic Outlook and Eurostat data, this index database frequently employed within the Analytics & Pricing team will be 
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used without further modifications. It will be exploited for adjusting historical claims and premiums to reflect inflationary impacts 

over time. The variables contained in this database are detailed below:  

Table 9: List of variables – index database 

Variable ID Description 

YEAR Year 

COUNTRY Country name 

COUNTRY_CODE Country code 

INDEX_TYPE CPI or CPPI 

INDEX Index value 

 

The exchange rate database contains exchange rate values at the first quarter of 2024 for all currencies covered by the AGCRe 

treaties. The variables included in this dataset are as follows: 

Table 10: List of variables – FX rates database 

Variable ID Description 

CURRENCY Currency 

EXCHANGE_RATE Exchange rate 

 

Once all the data specifications for pricing have been set, the following part will present the developed methodology for selecting 

and, if necessary, transforming the data required for pricing the diverse types of treaties.   
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4. Data processing 

This section will describe how the different databases are selected and transformed within the pricing tool based on treaty 

characteristics in order to develop a global pricing process that will increase the team pricing capacities. The following figure 

details the implemented steps to do so. Each process will be explained within this part. 

 

Figure 19: Data processing process 
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4.1 Data selection 

In this section, let us assume one wishes to price a treaty covering one or more ceding companies on some risk classification(s). 

The first step of the selection process involves retrieving all relevant information about the treaty from the Reinsurance T&C 

database. The table below summarizes, for each type of treaty, which data from the Reinsurance T&C database will be required 

to generate the indicators: 

Table 11: Variables needed from reinsurance T&C per treaty type 

Treaty type Variable Name  

All treaties ID 

COUNTRY_CODE 

CEDENT 

LOB 

RISK_CLASSIFICATION 

ATTACHING_TYPE 

POOLED 

POOL 

POOL_SHARE 

CURRENCY 

DISCOUNT_RATE 

INURING_CESSION_RATE 

XL per risk NB_LAYERS 

REINSTATEMENTS 

RETENTION 

LIMIT 

AAD 

AAL 

INDEXATION_CLAUSE 

INDEXATION_CLAUSE_THRESHOLD 

INDEXATION_CLAUSE_INFLATION_RATE 

INDEXATION_CLAUSE_INDEX 

PRICING_METHOD 

EXPERIENCE_PRICING_FREQ_RISK_DRIVER 

EXPOSURE_CURVE 

AGG RETENTION 

LIMIT 

QS CESSION_RATE 

CAPACITY 

COMMISSION_RATE 

SLIDING_SCALE_LR_LOWER_BOUND 

SLIDING_SCALE_LR_UPPER_BOUND  

SLIDING_SCALE_COMMISSION_LOWER_BOUND 

SLIDING_SCALE_COMMISSION_UPPER_BOUND 

LOSS_CORRIDOR 

LOSS_CORRIDOR_LR_LOWER_BOUND 

LOSS_CORRIDOR_LR_UPPER_BOUND 

TARGET_MARGIN 

PROFIT_SHARING 

SP CAPACITY 

COMMISSION_RATE 

SLIDING_SCALE_LR_LOWER_BOUND 

SLIDING_SCALE_LR_UPPER_BOUND 

SLIDING_SCALE_COMMISSION_LOWER_BOUND 

SLIDING_SCALE_COMMISSION_UPPER_BOUND 

TARGET_MARGIN 

PROFIT_SHARING 
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Once this information is retrieved, one needs to select the relevant data from the previously described data structures. Since data 

requirements vary depending on the treaty nature, not all databases will be used for pricing every treaty type. The table below 

details which databases are required for pricing each type of treaty: 

Table 12: List of data tables required for pricing each type of treaty 

Treaty type Databases required 

All treaties Reinsurance T&C 

FX rates  

Pricing parameters 

XL per risk Inflation indices  

Historical exposure  

Historical individual claims  

Risk profile  

Aggregate Historical exposure  

Historical aggregated claims  

Quota Share Historical exposure  

Historical aggregated claims  

Surplus  Historical individual claims  

Risk profile  

 

Thus, knowing the type of treaty, each of the relevant databases will be selected based on the previous table. Subsequently, each 

dataset will be filtered to retain only the data related to the specific treaty. The following filtrations will be applied for each 

database: 

➢ Historical Exposure, Risk Profile, Historical Individual/Aggregated Claims Databases: All variables where the 

ceding companies and risk classifications match those covered by the treaty will be selected.  

➢ FX Rates and Index Database: All variables where the currency or country matches those present in the databases will 

be selected.  

Once these transformations have been applied, further operations are needed for the historical claims databases. Due to the specific 

nature of insurance and the uncertainty surrounding the final cost of a claim, the ultimate loss of the aggregated or individual 

claims must be estimated to model losses properly. The ultimate loss is calculated as the sum of paid claims and outstanding 

reserves (which include both IBNR and case reserves). The next section will focus on describing the process of estimating 

aggregate losses, whether individual or collective. 

4.2 Ultimate loss calculation 

Let us consider the historical individual/aggregated claims database. First, depending on how the claims covered by the treaty are 

determined (Loss Occurring or Risk Attaching), the claims with the appropriate attachment type need to be selected. For a Loss 

Occurring (respectively Risk Attaching) treaty, claims whose attaching type corresponds to “Accident Year” (respectively 

“Underwriting Year”) are gathered. Once this operation has been made, the financial amounts are converted in the treaty currency 

thanks to the FX rates database. 

To estimate the ultimate amount and avoid biases when modeling ultimate amounts, one needs to calculate the IBNR of 

individual/aggregated claims. To do so, we first determine which claims will be used to calibrate the IBNRs. Indeed, to calculate 

IBNR, homogeneous types of policies are necessitated. If a treaty covers multiple risks and ceding companies, calibrating the 

IBNR using all the historical claims could introduce biases and violate the assumptions of the IBNR calculation model. The 

selection of claims is thus based on the following criteria: 
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1. Number of individual claims greater than 20 for each cedent and risk classification: 

If the number of claims for every cedent and risk classification combination exceeds 20 in the filtered historical claims 

database, and if the oldest claim is more than 5 years old for short-tail LoBs or more than 15 years old for long-tail LoBs, 

then the IBNR is calibrated on the claims within the filtered database. Regarding the aggregated claims database, since 

the number of individual claims is not available, only the historical depth restriction is considered. 

2. Number of claims less than 20 for one cedent and risk classification, but total greater than 20: 

If the number of historical claims for a given cedent and risk classification is less than 20 in the historical individual 

claims database, but the total number of claims within the filtered database exceeds 20, and if the oldest claim is more 

than 5 or 15 years old (depending on whether it is short-tail or long-tail LoBs), then the IBNR is calibrated on all historical 

individual claims covered by the treaty. Regarding the filtered aggregated claims database, only the historical depth 

restriction is considered. 

3. None of the above conditions are met: 

If none of the above conditions is met, the IBNRs are calibrated using all the claims within the historical individual 

claims database whose risk classification is covered by the treaty. The same applies to aggregated claims, where the 

IBNR is calibrated on the historical aggregated claims database. 

Let us now delve into the IBNR estimation procedure. First, the incurred amounts are aggregated by development year and 

attachment year to form the matrix below, known as the cumulative incurred amount triangle: 

[

𝐶1,1 ⋯ 𝐶1,𝑛
⋮ ⋱ ⋮
𝐶𝑛,1 ⋯ 0

] 

Where: 

• 𝑛 designates the maximum development year  

• 𝐶𝑖,𝑗 designates the cumulative FGU incurred amount for the period 𝑖 and the development year 𝑗. Thus, 𝐶𝑖,𝑗 = 0 for 𝑖 +

𝑗 − 1 > 𝑛. 

The main objective is then to estimate the unknown part of the triangle and deduce from it the ultimate loss. To do this, we will 

use the Chain Ladder - Mack model, widely employed in insurance. 

Let us consider a probabilized space (𝛺, 𝐹, 𝑃). We define the real random variables 𝑐𝑖,𝑗 = 𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1 for 1 ≤ 𝑖 ≤  𝑛, 2 ≤ 𝑗 ≤

 𝑛, 𝐶𝑖,1 = 𝑐𝑖,1 for 1 ≤ 𝑖 ≤  𝑛 where 𝑛 ∈  ℕ is a number of years. 𝑐𝑖,𝑗 is the random variable corresponding to the aggregated 

amount incurred FGU for claims occurring in the attachment year 𝑖 for the development year 𝑗. By construction, only random 

variables 𝑐𝑖,𝑗  such as 𝑖 + 𝑗 − 1 > 𝑛 are observed. We also introduce the filtration ℱ𝑘 =  𝜎(𝑐𝑖,𝑗  | 𝑖 +  𝑗 ≤  𝑘 +  1). By 

construction, variables 𝐶𝑖,𝑗 are ℱ𝑘-measurable if  𝑖 +  𝑗 ≤  𝑘 +  1. 

The Chain Ladder-Mack model is based on the following assumptions:  

• Hypothesis 1: The random variables (𝐶𝑖1,𝑗  )1≤𝑗≤𝑛
 and (𝐶𝑖2,𝑗  )1≤𝑗≤𝑛

are independent for 𝑖1  ≠  𝑖2. 

• Hypothesis 2: For 1 ≤  𝑗 ≤  𝑛 –  1, there exists 𝑓𝑗  ≥ 0 such that for 1 ≤  𝑖 ≤  𝑛 ∶ 

𝔼(𝐶𝑖,𝑗+1 |ℱ𝑖+𝑗−1)  =  𝑓𝑗𝐶𝑖,𝑗 

• Hypothesis 3: For 1 ≤  𝑗 ≤  𝑛 –  1, there exists 𝜎𝑗  ≥ 0 such that for 1 ≤  𝑖 ≤  𝑛 ∶ 
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𝑉𝑎𝑟(𝐶𝑖,𝑗+1 |ℱ𝑖+𝑗−1)  =  𝜎𝑗
2𝐶𝑖,𝑗 

For 1 ≤  𝑘 ≤  𝑛, the filtration ℬ𝑘  =  𝜎(𝐶𝑖,𝑗   |𝑖 +  𝑗 ≤  𝑛 +  1, 𝑗 ≤  𝑘)  ⊂ ℱ𝑘  is introduced  

Under these three assumptions, it can be shown that 𝔼(𝐶𝑖,𝑗+1 |ℬ𝑗)  =  𝑓𝑗𝐶𝑖,𝑗, 𝑉𝑎𝑟(𝐶𝑖,𝑗+1 |ℬ𝑗)  =  𝜎𝑗
2𝐶𝑖,𝑗 . The best linear estimator 

of 𝑓𝑗 in (𝑓𝑖,𝑗 = 
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
)
1≤𝑖≤𝑛−𝑗

for the quadratic conditioning error at ℬ𝑗 is for 1 ≤  𝑗 ≤  𝑛 −  1: 

𝑓𝑗 =
∑ 𝑤𝑖,𝑗
𝑛−𝑗
𝑖=1 𝑓𝑖,𝑗

∑ 𝑤𝑖,𝑗
𝑛−𝑗
𝑖=1

= 
∑ 𝐶𝑖,𝑗
𝑛−𝑗
𝑖=1 𝑓𝑖,𝑗

∑ 𝐶𝑖,𝑗
𝑛−𝑗
𝑖=1

= 
∑ 𝐶𝑖,𝑗+1
𝑛−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑛−𝑗
𝑖=1

 

Link-ratios 𝑓𝑖,𝑗 can be interpreted as a weighted mean of the observed individual link-ratios 𝑓𝑖,𝑗 , weighted by the 𝐶𝑖,𝑗. Other 

weights can be chosen, allowing some observed link-ratio to be excluded if considered as “outlier.” To consider these outliers, the 

following weights were defined relying on expert judgement in the context of a previous study at AGCRe: 

• If 𝑓𝑖,𝑗 ≤ 2, 𝑤𝑖,𝑗 = 1 

• If 2 < 𝑓𝑖,𝑗 ≤ 5, 𝑤𝑖,𝑗 = 0.66 

• If 5 < 𝑓𝑖,𝑗 ≤ 7, 𝑤𝑖,𝑗 = 0.33 

• If 7 < 𝑓𝑖,𝑗, 𝑤𝑖,𝑗 = 0 

Furthermore, if an individual development factor is less than 1 (a situation where case reserves were overestimated), the value of 

the individual coefficient is fixed at 1. The estimators 𝑓𝑗 for each development year are then derived by calculating the weighted 

average of each individual development factor per development year. 

To obtain the IBNR amount per claim, one needs to consider the most recent incurred amount 𝑋𝑖,𝑛−𝑖+1 and multiply it by 

∏ 𝑓𝑗 − 1
𝑛−1
𝑗=𝑛−𝑖+1 : 

𝐼𝐵𝑁𝑅𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐𝑙𝑎𝑖𝑚 = ( ∏ 𝑓𝑗

𝑛−1

𝑗=𝑛−𝑖+1

− 1) ∗ 𝑋𝑖,𝑛−𝑖+1  

For historical aggregated claims database, one needs to apply the same operation on the most recent cumulated amount per year 

𝐶𝑖,𝑛−𝑖+1:  

𝐼𝐵𝑁𝑅𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑐𝑙𝑎𝑖𝑚 = ( ∏ 𝑓𝑗

𝑛−1

𝑗=𝑛−𝑖+1

− 1) ∗ 𝐶𝑖,𝑛−𝑖+1  

From the previous IBNRs, the ultimate loss per claim/year can be computed: 

𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑙𝑜𝑠𝑠 = 𝐶𝑙𝑎𝑖𝑚 𝑖𝑛𝑐𝑐𝑢𝑟𝑟𝑒𝑑 + 𝐼𝐵𝑁𝑅 = 𝐶𝑙𝑎𝑖𝑚 𝑃𝑎𝑖𝑑 + 𝐶𝑎𝑠𝑒 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 + 𝐼𝐵𝑁𝑅 

In the case of AGG or QS treaties, instead of considering the ultimate loss per year, the historical Ultimate Loss Ratio (ULR) will 

be used. These ULRs will be estimated based on historical exposure data. Regarding a loss-occurring treaty, the GEP will be used 

to calculate the ULR by dividing the ultimate loss per year with the corresponding GEP. For risk-attaching treaties, the same logic 

applies, with the GWP instead. 

To illustrate the methodology, let us consider an example using a development triangle for an XL treaty. The analysis focuses on 

a treaty that covers a single cedent, involves one specific risk category, and pertains to a short-tail LoB. Consequently, all historical 

individual claims falling within the treaty's scope have been incorporated into the construction of this development triangle.  
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Table 13: Example of a development triangle for an XL treaty 

 
1 2 3 4 5 6 7 8 9 10 11 

2014 1569875 2457482 2881275 3168144 3400194 3502200 3572244 3575816 3575816 3575816 3575816 

2015 2365478 3178114 3701041 3991410 4320582 4455557 4550995 4578301 4587457 4587457 
 

2016 1269875 1890361 2259895 2460987 2706667 2800751 2857774 2883494 2883494 
  

2017 3256844 4046153 4927791 5447180 5718831 5945468 6096899 6145675 
   

2018 2763543 4568966 5397022 5738303 6089694 6319884 6454497 
    

2019 1325698 1953620 2291616 2476546 2619929 2706334 
     

2020 1789563 2801632 3323296 3646701 3863388 
      

2021 1124593 1658257 1913629 2075463 
       

2022 1365897 1892628 2249305 
        

2023 1532463 2385340 
         

2024 1145863 
          

 

Using the previous development triangle, it is possible to calculate the individual development factors 𝑓𝑖,𝑗: 

Table 14: Example of individual development factors 

 
1 2 3 4 5 6 7 8 9 10 

2014 1,57 1,17 1,10 1,07 1,03 1,02 1,00 1,00 1,00 1,00 

2015 1,34 1,16 1,08 1,08 1,03 1,02 1,01 1,00 1,00 
 

2016 1,49 1,20 1,09 1,10 1,03 1,02 1,01 1,00 
  

2017 1,24 1,22 1,11 1,05 1,04 1,03 1,01 
   

2018 1,65 1,18 1,06 1,06 1,04 1,02 
    

2019 1,47 1,17 1,08 1,06 1,03 
     

2020 1,57 1,19 1,10 1,06 
      

2021 1,47 1,15 1,08 
       

2022 1,39 1,19 
        

2023 1,56 
         

 

Since no individual development factors exceed two, all the weights are set to one. This allows us to calculate the development 

factors for each development year: 

Table 15: Example of development factors 

Development year 1 2 3 4 5 6 7 8 9 10 

𝑓̂𝑗 1,47 1,18 1,09 1,07 1,03 1,02 1,01 1,00 1,00 1,00 

 

The individual IBNRs can thus be calculated in our case, constituting the ultimate loss amount of each individual claim. 

To ensure the proper application of the Mack chain-ladder model, one needs to verify its assumptions. The hypothesis regarding 

the independence between (𝐶𝑖1,𝑗  )1≤𝑗≤𝑛
 and (𝐶𝑖2,𝑗  )1≤𝑗≤𝑛

for 𝑖1  ≠  𝑖2, can be checked graphically by plotting the development 

factors row by row against their median. If the development factors are not too dispersed around the median value, it indicates 

that the independence assumption is satisfied. Figure 20 compares the dispersion around the median for development years 1 to 

4: the development factor values are not excessively dispersed around the median, validating the hypothesis. 
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Figure 20: Median comparison for individual development factors 

To verify Hypothesis 2, one can plot the linear regression line of cumulative incurred amounts 𝐶𝑖,𝑗+1 against 𝐶𝑖,𝑗. The figure below 

presents the regression plots for development years 1 to 4. The hypothesis appears to be validated, particularly since the 𝑅2 values 

of the regressions exceed 0.9, and the regression coefficients are statistically significant at the 5% level. 

 

 

Figure 21: Linear regression of 𝐶𝑖,𝑗+1 on 𝐶𝑖,𝑗 
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Regarding Hypothesis 3, it can be checked using the graph of standardized residuals 
𝐶𝑖,𝑗+1−𝑓𝑗̂𝐶𝑖,𝑗

√𝐶𝑖,𝑗
. The figure below displays the 

standardized residuals for development years 1 to 4. The residuals do not display any specific trend and appear random, which 

provides graphical validation of the assumption regarding the variance hypothesis of the chain-ladder model. 

 

 

Figure 22: Standardized residuals 

The Chain-Ladder method has certain limitations that can affect its reliability. One key issue is its reliance on historical claims. 

An atypical data point can distort an entire row and, consequently, the ultimate loss estimate. However, incorporating different 

weights in the provisioning process can help mitigate this issue during IBNR estimation. Another concern is the dependence on 

the last development periods, where limited data is available to calculate development factors. Nonetheless, this impact is generally 

less critical, as claims tend to stabilize in later development periods. Additionally, the method assumes strong independence of 

development factors across accident years, an assumption that may not always hold due to changes in claims handling or reporting 

practices. It is therefore essential to check the model’s assumptions for each type of treaty and interpret results cautiously if these 

assumptions are not met. 

For this study, the Chain-Ladder method was selected due to its simplicity, ease of implementation, and the ability to quickly and 

graphically check its assumptions. Other methods for IBNR calculation, such as the Loss Ratio method, the Bornhuetter-Fergusson 

method, or the Benktander method, also exist. Integrating these alternative approaches in the future could provide a comparative 

perspective on ultimate loss estimates. Collaborating with the AGCRe Reserving team could also be a valuable step in successfully 

implementing these enhancements. 
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4.3 Payment pattern computation 

The previous section provided estimates for individual or aggregated ultimate claim amounts. In this part, in order to consider 

discounting issues and as-if calculations, we focused on modeling how claims are paid over time. To do so, a payment pace, known 

as a payment pattern, is computed at a 30-year horizon. The payment patterns calibrated in this study are based on an annual scale, 

with the simplifying assumption that all claims are settled in the middle of the year. These simplifications enable the calibration 

of payment patterns on an annual basis.  

To estimate the payment pattern, the Chain-Ladder methodology has been opted for. Like the estimation of IBNR, cumulative 

development triangles are constructed. However, unlike the IBNR estimation, cumulative FGU paid amounts will be considered 

instead of incurred amounts since one is interested in the payment frequency. Regarding the selection of historical claims, the 

same selection process will be used to determine which claims will be included for payment pattern computation. Following the 

same approach as for IBNR estimation, development factors 𝑓𝑗 by development year 𝑗 are calculated. 

A cumulative payment pattern is thus defined based on these development factors: 

𝑃𝑃𝑐𝑢𝑚,𝑗 =  
1

∏ 𝑓̂𝑘
𝑛−1
𝑘=𝑗

  for 1 ≤  𝑗 ≤  𝑛 –  1 and 𝑃𝑃𝑐𝑢𝑚,𝑘 = 1 for 𝑘 ∈ {𝑛, … ,30}1 

This variable represents the cumulative paid proportion of the claim for the development year 𝑗. The incremental payment pattern 

over a development year 𝑗 noted 𝑃𝑃𝑗 is defined by:  

𝑃𝑃𝑗 =  𝑃𝑃𝑐𝑢𝑚,𝑗 − 𝑃𝑃𝑐𝑢𝑚,𝑗−1 for 2 ≤  𝑗 ≤  30  and 𝑃𝑃1 =  𝑃𝑃𝑐𝑢𝑚,1 

Depending on the number of triangles calibrated, one or more payment patterns are computed for each treaty. The payment pattern 

vector will be noted  𝑃𝑃 = (𝑃𝑃𝑗)1 ≤ 𝑗 ≤ 30. 

Let us take as an example two reinsurance treaties: both are loss-occurring treaty, one is covering a single cedent on the property 

LoB, and another covering two different cedents on the liability LoB. Each of these payment patterns is calibrated using the 

complete set of historical claims data. 

 

Figure 23: Cumulated PP of a property reinsurance treaty’s covered underlying claims 

 
1 The extension of the payment pattern to 30 years is carried out to obtain an estimate of the payment pace over a 30-year horizon. 
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Figure 24: Cumulated PP of a liability reinsurance treaty’s covered underlying claims 

Regarding the coverage perimeter of the considered property treaty, 96% of the underlying/covered ultimate claims amounts are 

paid after 4 years. In contrast, for the liability treaty, only 51% of the claim has been paid within this period. Additionally, a notable 

difference is observed in the early years of development, where claims for the property treaty are settled more quickly compared 

to the liability treaty. Since a material or property damage claim settles faster than a serious bodily injury claim, these results were 

expected and help to highlight the characteristics of short-tail versus long-tail business.  

4.4 As-if adjustments (XL treaty) 

When considering the ultimate loss of a claim, one does not necessarily account for the economic changes that may have occurred, 

especially when the oldest claims date back many years. Directly using the historical ultimate loss amounts in modeling could 

lead to underestimating or overestimating the underlying risks. To address this issue, the ultimate claim amounts should be 

estimated “as-if” it had occurred during the period covered by the treaty to be analyzed, considering current economic conditions. 

For example, the gross amount of a claim incurred in 2003 would not be equivalent to the amount of the same claim if it occurred 

in 2024, due to factors such as inflation. This adjustment would allow historical amounts to reflect their true value in 2024, 

avoiding any bias in future severity modeling. 

The following section will explain how individual amounts are converted into "as-if" values for XL per-risk treaties within the 

reinsurance pricing tool developed in this paper. In the case of AGG or QS treaties, it is assumed that the ultimate loss ratios are 

less dependent on the "as-if" calculation than individual claim amounts. We assumed that applying the "as-if" adjustment would 

multiply both the premium and the total amount by approximately the same factor. Consequently, by considering ULRs, this "as-

if" adjustment does not impact the ULRs values. Therefore, we decided to simplify the process and omit the "as-if" adjustment 

for QS and AGG treaties. Concerning SP treaties, they will be modeled using risk profiles and do not necessitate as-if 

transformations. 

Once the payment pattern vector has been estimated for the considered XL treaty, the last known provisioned amount of each 

claim will be projected using the calibrated payment pattern. Regarding the payment pattern vector, it is important to note that one 

or more payment patterns may have been calibrated. If only one payment pattern has been calibrated, it will be used to project 

reserves for all claims. However, if multiple payment patterns have been computed, the payment pattern corresponding to the 

cedent/risk classification that matches the claim will be used for the projection. 

For a given claim, we define 𝑅𝐴𝑖,𝑒−𝑖+1
𝑒  as the last known amount provisioned amount where: 

• 𝑖 is the attachment year  
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• 𝑒 is the most recent evaluation year  

• 𝑒 − 𝑖 + 1 corresponds to the development year 

The reserve amount corresponds to the sum of the case reserves and the individual IBNR as estimated in the previous section. Let 

𝑃𝑃 be the incremental payment pattern vector used for an individual claim. If 𝑅𝐴𝑖,𝑡−𝑖+1
𝑒 ≠ 0, the claim cash-flow 𝐶𝐹𝑒+𝑘(. ) over 

the years 𝑒 + 𝑘 with 𝑘 ∈ {1, … , 30 − (𝑒 − 𝑖)}, function of the last amount provisioned 𝑅𝐴𝑖,𝑒−𝑖+1
𝑒 , is defined by : 

𝐶𝐹𝑒−𝑖+𝑘(𝑅𝐴𝑖,𝑒−𝑖+1
𝑒 ) =

𝑃𝑃𝑘

1 − ∑ 𝑃𝑃𝑗
𝑡−𝑖
𝑗=1

∗ 𝑅𝐴𝑖,𝑒−𝑖+1
𝑒   

If  ∑ 𝑃𝑃𝑗
𝑡−𝑖
𝑗=1 = 1 which corresponds to the case where the entire claim should have been settled, but a provisioned amount 𝑅𝐴𝑖,𝑡−𝑖+1

𝑒  

is not zero, all reserves are assumed to be released during the year, i.e. 𝐶𝐹𝑒+𝑘(𝑅𝐴𝑖,𝑒−𝑖+1
𝑒 ) = 𝑅𝐴𝑖,𝑒−𝑖+1

𝑒 . 

For a given claim, the following vector of cash flows is thus computed: 

𝐶𝐹 = (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑒−𝑖 , 𝐶𝐹𝑒−𝑖+1(𝑅𝐴𝑖,𝑒−𝑖+1
𝑒 ) , … , 𝐶𝐹30(𝑅𝐴𝑖,𝑒−𝑖+1

𝑒 )) = ((𝐶𝐹𝑖,𝑗̃)1≤𝑗≤30)  

It is then necessary to as-if these various payments. The CPI or the CPPI of the country where the concerned cedent is located is 

retrieved. Let us note (𝑖𝑛𝑑𝑒𝑥𝑡,𝑐𝑒𝑑𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑟𝑦)1954≤𝑡≤2050 the corresponding vector. Any other kind of relevant inflation measure 

indices could be used and may be more relevant according to the covered line of business. In our specific case, we resorted mainly 

to CPI (for all LoBs except property per risk) and CPPI (for property per risk treaties). The ultimate as-if amount 𝑋𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒,   𝑎𝑠−𝑖𝑓 

of the claim is therefore calculated by summing together all the as-if cash flows: 

𝑋𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒,   𝑎𝑠−𝑖𝑓 = ∑
𝑖𝑛𝑑𝑒𝑥𝑟𝑒𝑛𝑒𝑤𝑎𝑙 𝑦𝑒𝑎𝑟+𝑗−1,𝑐𝑒𝑑𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑖𝑛𝑑𝑒𝑥𝑖+𝑗−1,𝑐𝑒𝑑𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
∗ 𝐶𝐹𝑖,𝑗̃

 30

𝑗=1

 

These various operations are carried out for each claim in the selected historical individual database. The figure below 

schematically summarizes all the operations applied in the as-if adjustment process. 

 

Figure 25: Overview of the as-if calculation process 

Let us consider a property XL treaty 1M€ 𝑥𝑠 2M€ and a liability XL treaty 10M€ 𝑥𝑠 10M€. Historical claims for both treaties are 

shown in Figure 26 and Figure 27. It illustrates how historical losses are distributed. The "as-if" adjustments applied to older 

claims reveal a proportionally greater impact, indicating that the size of those claims would have been significantly higher in value 

under current macroeconomic and market conditions, reflecting an upward trend in the index over time. Additionally, for both 

treaties, reserves (case reserves and IBNR) are notably larger for recent claims while being nearly null for claims older by a few 

years which have been fully settled and are no longer reserved. However, we observe that claims covered by the liability treaty 
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hold higher reserve amounts for older claims compared to the property treaty. This highlights the difference between the short-tail 

and long-tail nature of the risks covered by the considered treaties. To sum up, we can see clearly on the following chart that the 

as-if effect prevails for older claims, while the ultimate projection effect is predominant for more recent ones. 

   

Figure 26: Historical claims amount for a property 1M€ xs 2M€ treaty 

 

 

Figure 27: Historical claims amount for a liability 10M€ xs 10M€ treaty 
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4.5 Ultimate historical frequency calculation (XL treaty) 

When modeling XL treaties, due to the model selected to model individual claims, it was crucial to approximate the distribution 

of the number of claims per year, as this serves as an input for modeling underlying claims. Models and statistical frameworks for 

claim counts can be constructed in either discrete or continuous time.  

To model claims counts in continuous time, the use of counting processes would allow us to represent the number of claims 

covered by the treaty over a given period. A stochastic process 𝑁 =  {𝑁(𝑡);  𝑡 ≥  0} is defined as a counting process if it satisfies 

the following four conditions: 

• 𝑁(𝑡)  ≥  0 

• 𝑁(𝑡) is integer valued  

• If 𝑠 <  𝑡, then 𝑁(𝑠)  ≤  𝑁(𝑡)  

• For 𝑠 <  𝑡, 𝑁(𝑡)  −  𝑁(𝑠) equals the number of claims that have occurred in the time interval (𝑠, 𝑡].  

The most popular claims-counting process is the Poisson process and its extensions, including homogeneous, inhomogeneous, 

mixed, doubly stochastic, and even multivariate Poisson processes. The multivariate extension can be particularly useful for 

modeling the number of claims when multiple cedents or various risk classifications are covered by a reinsurance treaty. While 

other counting processes could also be considered, they will not be detailed in this study. 

Table 16: Overview of Poisson process properties 

Homogeneous Poisson process 

• 𝑁𝜇(𝑡) 

• 𝜇(𝑡)  =  𝜆𝑡 

• 𝔼(𝑁𝜇(𝑡)) = 𝑉𝑎𝑟(𝑁𝜇(𝑡)) = 𝜆𝑡  

Inhomogeneous Poisson process 

• 𝑁𝜇(𝑡) 

• 𝜇(𝑡)  =  ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
 

• 𝔼(𝑁𝜇(𝑡)) = 𝑉𝑎𝑟(𝑁𝜇(𝑡)) = 𝜇(𝑡) 

Mixed Poisson process 

• 𝑁𝜇(𝑡) 

• 𝜇(𝑡)  =  Λ𝑡 

• 𝔼(𝑁𝜇(𝑡)) = 𝑡𝔼(Λ) 

• 𝑉𝑎𝑟(𝑁𝜇(𝑡)) = 𝑡𝔼(Λ) + 𝑡
2𝑉𝑎𝑟(Λ) 

Doubly stochastic Poisson process 

• 𝑁𝜇(𝑡) 

• 𝜇(𝑡)  =  ∫ Λ(𝑢)𝑑𝑢
𝑡

0
 

• 𝔼(𝑁𝜇(𝑡)) = ∫ 𝔼(Λ(𝑢))𝑑𝑢
𝑡

0
 

• 𝑉𝑎𝑟(𝑁𝜇(𝑡)) = ∫ 𝔼(Λ(𝑢))𝑑𝑢
𝑡

0
+ 𝑉𝑎𝑟(∫ Λ(𝑢)𝑑𝑢

𝑡

0
) 

 

When modeling claims for reinsurance treaties with a one-year coverage period, our goal is to predict the number of claims on an 

annual scale. A homogeneous Poisson process is not well-suited for this purpose due to its fixed mean. Such processes are therefore 

better suited for modeling portfolios stable over time. To calibrate homogeneous Poisson process, one could assume that only the 

most recent year is considered, as underlying portfolios are less likely to change significantly. However, this approach would limit 

the data available for calibration, likely leading to underestimation since some claims might still be unreported and thus omitted 

in the calibration process. The same limitation applies to mixed Poisson processes. As an alternative, inhomogeneous or doubly 

stochastic Poisson processes seem more appropriate for modeling claim numbers. These approaches allow for varying rates over 

time, reflecting changes in the portfolio or other factors. However, calibrating such models requires defining rate parameters and 

mean value functions, which makes parameter estimation more complex. Furthermore, in the context of insurance, claims can be 

reported to the insurer several years after the occurrence of the event or the inception of the policy. Accurately modeling claim 

numbers evolution and linking them to their accident/underwriting year would thus be challenging to implement. More generally, 

the time process would also require detailed knowledge of claim attachment dates, potentially down to the month or day level. To 

ensure data consistency across entities, only the attachment year has been considered.  
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Given these challenges, we chose to focus on modeling the number of claims by attachment year using a discrete approach, which 

appears more suitable. To effectively model the number of claims, the ultimate number of claims per attachment year is also 

needed. However, the use of the Chain-Ladder model for projecting claim counts would not be appropriate. Due to the purely 

multiplicative nature of the Chain-Ladder method, if the number of claims in the first development year is zero, projecting claims 

using this method would lead to a null ultimate number of claims. Furthermore, the annual number of claims seems more sensitive 

to exposure evolution than individual claim amounts. For instance, a portfolio covering more risks is likely to face a higher number 

of claims than a smaller portfolio, whereas individual claim amounts might exhibit less variation. Considering the portfolio 

exposure - measured either in total insured value, number of risks or premium volumes - might thus be relevant when evaluating 

the ultimate number of claims. 

To address these issues, a methodology based on the Schnieper model has been preferred to calculate the ultimate number of 

claims. In accordance with the Schnieper model, let us note: 

• 𝑁𝑖,𝑗 the number of annual claims for an attachment year 𝑖 and a development year 𝑗.  

• 𝐶𝑖,𝑗 the cumulative number of claims for an attachment year 𝑖 and a development year 𝑗. The cumulative number of 

claims is then written as : 𝐶𝑖,1  =  𝑁𝑖,1 for 1 ≤  𝑖 ≤  𝑛and  𝐶𝑖,𝑗+1  =  𝐶𝑖,𝑗  +  𝑁𝑖,𝑗+1 for 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑛 –  1. 

• 𝐸𝑖 is the underlying portfolio exposure measure for the attachment year 𝑖. 

Let us introduce filtration ℱ𝑘 =  𝜎(𝑁𝑖,𝑗  | 𝑖 +  𝑗 ≤  𝑘 +  1). Schnieper's model is based on the following assumptions. 

• Assumption 1: The random variables (𝑁𝑖1,𝑗  )1≤𝑗≤𝑛
 and (𝑁𝑖2,𝑗 )1≤𝑗≤𝑛

 are independent for 𝑖1  ≠  𝑖2. 

• Assumption 2: For 1 ≤  𝑗 ≤  𝑛 there exists 𝜆𝑗  ≥ 0 such that for 1 ≤  𝑖 ≤  𝑛 ∶ 

𝔼(𝑁𝑖,𝑗  |ℱ𝑖+𝑗−2)  =  𝜆𝑗𝐸𝑖 

• Assumption 3: For 1 ≤  𝑗 ≤  𝑛 –  1 there exists 𝜎𝑗  ≥ 0 such that for 1 ≤  𝑖 ≤  𝑛 ∶ 

𝑉𝑎𝑟(𝑁𝑖,𝑗 |ℱ𝑖+𝑗−2)  =  𝜎𝑗
2𝐸𝑖 

By introducing filtration ℬ𝑘  =  𝜎(𝑁𝑖,𝑗   |𝑖 +  𝑗 ≤  𝑛 +  1, 𝑗 ≤  𝑘)  ⊂ ℱ𝑘 for 1 ≤  𝑘 ≤  𝑛 and under the previous assumptions, 

we see that 𝔼(𝑁𝑖,𝑗)  =  𝜆𝑗𝐸𝑖 and 𝑉𝑎𝑟(𝑁𝑖,𝑗) =  𝜎𝑗
2𝐸𝑖 .  As in the Chain-Ladder model, it can be shown that, under the above 

assumptions, the best linear estimator of 𝜆𝑗 in (𝜆̂𝑖,𝑗 =
𝑁𝑖,𝑗

𝐸𝑖
)
1≤𝑖≤𝑛−𝑗+1

conditional on ℬ𝑗 for the mean-squared error is : 

𝜆𝑗̂ = 
∑ 𝐸𝑖 𝜆̂𝑖,𝑗
𝑛+𝑗−1
𝑖=1

∑ 𝐸𝑖
𝑛−𝑗+1
𝑖=1

=
∑ 𝑁𝑖,𝑗
𝑛+𝑗−1
𝑖=1

∑ 𝐸𝑖
𝑛−𝑗+1
𝑖=1

 

For 1 ≤  𝑖 ≤  𝑛 and 𝑛 −  𝑖 +  1 ≤  𝑗 ≤  𝑛, the estimator 𝐶̂𝑖,𝑗 = 𝐶𝑖,𝑛+1−𝑖 + 𝐸𝑖 ∑ 𝜆̂𝑘
𝑗
𝑘=𝑛+2−𝑖  is an unbiased estimator of 𝐶𝑖,𝑗. The 

ultimate number of claims per year can finally be deduced by developing the number of claims triangle and conserving the ultimate 

column (𝐶̂𝑖,𝑛)1≤𝑖≤𝑛 . 

Concerning the number of triangles, if a treaty covers multiple risks or cedents, and the historical number of claims per cedent/risk 

classification combination exceeds 20, there will be as many triangles as there are cedent and risk classification combinations. 

Otherwise, a single triangle will be calibrated. 

For exposure data, one could use GWP, GEP, Sum Insured, or the Number of Risks per year for a specific cedent/risk classification 

combination. If a single triangle is used, the corresponding exposure values will be aggregated to provide a single exposure value. 

Regarding the choice of exposure type, the number of risks per year is more appropriate, as it is not inherently sensitive to 

economic fluctuations, unlike monetary values, which could introduce biases in the calculation of development factors. However, 
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the final choice of exposure depends on data availability. If historical exposure data are insufficient for accurately estimating the 

ultimate loss, additional data may need to be requested from ceding entities. 

Let us illustrate the methodology over a fictive example. We consider the following triangle of the number of annual claims 𝑁𝑖,𝑗:  

Table 17: Example of a development triangle for the number of claims 

 1 2 3 4 5 6 7 8 9 10 

2015 15 2 2 1 0 0 0 0 0 0 

2016 14 5 3 0 0 0 0 0 0 
 

2017 19 1 1 2 0 0 0 0 
  

2018 17 4 1 2 0 0 0 
   

2019 21 7 2 0 1 0 
    

2020 23 5 3 0 0 
     

2021 26 4 2 0 
      

2022 25 5 1 
       

2023 23 4 
        

2024 36 
         

 

The historical GEP are used to model the exposure. The values applied in this example are provided in the table below. 

Table 18: Example of historical exposure value 

Attachment year 𝑬𝒊 

2015 59 333 657 € 

2016 60 569 438 € 

2017 61 535 436 € 

2018 61 398 589 € 

2019 64 589 136 € 

2020 65 789 351 € 

2021 66 589 632 € 

2022 64 893 598 € 

2023 67 968 326 € 

2024 69 875 325 € 

 

Once these foundations are established, it is possible to calculate the values of 𝜆𝑗̂ for each development year. These values are 

listed below. 

Table 19: Development factors for ultimate number of claims 

 1 2 3 4 5 6 7 8 9 10 

𝜆𝑗̂ 3,25E-07 6,46E-08 2,97E-08 1,14E-08 2,68E-09 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

 

It is then feasible to develop the previous triangle and estimate the ultimate number of claims. The ultimate number of claims is 

provided in the table below. 
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Table 20: Ultimate claim frequency 

Attachment year 𝑪̂𝒊,𝒏 

2015 20 

2016 22 

2017 23 

2018 24 

2019 31 

2020 31 

2021 32 

2022 32 

2023 30 

2024 34 

 

The model proposed earlier has several shortcomings. It relies on strong assumptions, notably the independence of the number of 

claims based on the development years, an assumption that may not always hold true. To verify hypotheses 2 and 3, it would also 

be possible to plot the values of  𝑁𝑖,𝑗 against the values of 𝐸𝑖 to check the model's assumptions and examine the standardized 

residuals. Additionally, this model is highly dependent on data and requires reliable exposure data, as well as sufficient historical 

depth to make accurate estimations. However, we have decided to apply this method due to its relative simplicity in 

implementation, and because it accounts for the underlying evolution of exposure in the calculation of the ultimate number of 

claims, both for risk attaching and loss occurring treaties. 

 

To conclude this section, the following figures summarize the process implemented during the processing phase to obtain the 

outputs necessary for modeling the underlying claims experience of the treaties. Including this aspect within the pricing tool is 

one of the strengths of this project, as it addresses part of the research question by enabling the team to take control of the data 

transformation processes and clarifying the requirements necessary for modeling. 
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Figure 28: Data processing module overview – XL per risk treaties 

 

Figure 29: Data processing module overview – AGG and QS treaties 

 

Figure 30: Data processing module overview – SP treaties
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5. Modeling losses 

To build AGCRe’s own perspective on reinsurance treaties and increase pricing capacities, modeling the losses ceded to each 

treaty is crucial and widely employed since the treaty’s risk assessment is based on the distributions of these underlying losses. 

Several methods can be implemented for this purpose. For instance, numerous resources enable the calibration of statistical 

distributions using historical claims data to derive ceded loss distributions through mathematical modeling. In order to get an 

estimate of the total underlying loss experience 𝑆 per year of coverage of a reinsurance treaty, one could use the normal 

approximation based on the first few moments of the distribution 𝑆. The Panjer recursion or the Fast Fourier transform can also 

be implemented to approximate the distribution of the yearly loss experience. The distribution of recoveries for QS and AGG can 

then be deduced mathematically in a relatively simple way using the cumulative distribution function of the distribution 𝑆. 

However, such approaches have limitations due to the complexity and unique features of reinsurance treaties which make it 

challenging to model reinsurer losses accurately. 

Given the growing computational power available for handling complex calculations, the Monte Carlo method has been preferred. 

It is a computational technique based on repeated random sampling in order to estimate numerical values. This approach offers 

several advantages for reinsurance modeling since treaty risk and profitability indicators are difficult to compute directly. Its 

flexibility makes it suitable for accommodating complex treaty structures and non-linear features, like indexation clauses, which 

analytical models struggle to handle. The Monte Carlo method is thus used to model the underlying claims covered by any 

reinsurance treaties. By applying treaty conditions to simulated claims amounts, it becomes possible to derive a distribution of 

losses ceded to the reinsurer. This loss distribution is then used to calculate various indicators, which will be detailed in the next 

section. 

To model reinsurer losses, two distinct methodologies has been selected, depending on the type of treaty: 

• Excess of Loss per risk: The modeling focuses on individual underlying claims. The collective risk model, a widely 

used framework in insurance, has been selected for this purpose. In cases where historical claims data is insufficient or 

unreliable, the exposure pricing method will also be employed as an alternative.  

• Surplus: Surplus treaties are currently not modeled within the internal model. In this work, they will be evaluated using 

exposure curves, and only for the property LoB. SP treaties, which are influenced by several factors such as sums insured, 

has been modeled in this way due to the practicality of exposure curves. These curves allow for the derivation of various 

quantities from the data contained in risk profiles. 

• Aggregate and Quota Share: The methodology used to model these previously unmodeled treaties relies on modeling 

the ultimate loss ratio. This approach focuses on the aggregate behavior of claims rather than individual claim modeling 

to estimate reinsurer losses. 

The following section will focus on presenting the implemented methodology through the analysis of various treaties. The figure 

below helps get a good grasp of the modeling process, including its inputs and outputs. The elements marked with a "P" in this 

diagram will be detailed throughout this section. 
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Figure 31: Modeling process 
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5.1 Modeling losses by frequency severity (XL per Risk) 

For an XL per risk treaty, the focus lies on modeling the individual underlying claims that fall within the scope of the treaty. To 

achieve this, the collective model has been selected. This choice is justified by the model’s flexibility and adaptability to the 

available data. Additionally, for XL treaties, the treaty terms are applied at the level of individual claims, making the collective 

model a coherent choice for this type of treaty. XL treaties are studied in this actuarial work because they represent an important 

part of underwritten treaties: providing the Analytics and Pricing team with an internal perspective on theses treaties is one of the 

objectives of this paper, in addition to addressing treaties that are not modeled within the internal model (specifically non-pooled 

treaties and for certain cedents/risk classifications). 

In the collective model, the total underlying loss experience per year of coverage of a reinsurance treaty is denoted by the random 

variable 𝑆, defined as a random sum: 

𝑆 =  ∑𝑋𝑘

𝑁

𝑘=1

 

Where 𝑁 denotes a discrete random variable corresponding to the number of claims attached to the reinsurance treaty and 

(𝑋𝑘)1 ≤ 𝑘 ≤ 𝑁 is a sequence of independent and identically distributed random variables corresponding to the amount attached to 

the claim 𝑘. Furthermore, it is assumed that for all 𝑘, 𝑁 and 𝑋𝑘 are independent. In this study, 𝑁 will be referred as the frequency 

distribution while 𝑋 corresponds to the severity distribution.  

To calibrate the frequency and severity distributions, the outputs of the data processing module for XL treaty will be used: 

• The historical individual as-if ultimate claims amount distribution  

• The historical ultimate frequency per attachment year distribution  

In our model, the calibration of frequency and severity distributions depends on the number of available severity values for each 

cedent-risk crossover covered by the treaty: 

• When the number of historical claims exceeds 20 for all cedent-risk crossovers within the treaty, specific claims 

generators are calibrated for each crossover. 

• When the number of severity values is 20 or less, a single claims generator is calibrated for all claims.  

In practice, treaties covering multiple cedents and various risks encounter significant variability in claim frequency and severity, 

depending on the cedent and the risk characteristics. This variability challenges the assumptions of independence and identical 

distribution of claims, as well as the independence between frequency and severity. By calibrating specific frequency and severity 

distributions for each cedent-risk crossover, the model groups claim related to more homogeneous policies, better aligning with 

the frequency-severity model's assumptions. However, this approach introduces a trade-off: fine segmentation reduces the number 

of claims available for each group. The choice of a threshold of 20 claims was made to balance these factors. On one hand, the 

threshold ensures the model's assumptions are respected by avoiding overly heterogeneous risk groupings. On the other hand, it 

maintains a sufficient sample size to allow statistically reliable calibration. However, by separating the modeling processes based 

on cedent and risk classification crossovers, the correlations between the evolution of claim frequency and severity are not 

accounted for. Each crossover is modeled independently, which constitutes a limitation in calibrating multiple generators. Despite 

this drawback, the method will still be applied since reinsurance treaties generally cover a single cedent and a single risk 

classification.  

This methodology has also other drawbacks: for XL treaties with high retentions, there may not be enough loss experience to 

produce credible results. The method also assumes that the treaty will face similar loss experiences, which may not hold true if 

the covered insurance portfolio composition changes over time. Even though the underlying portfolio exposure evolution is backed 

in the Schnieper claims frequency statistical model, it is a priori not the case in the claim’s sizes statistical models. Indeed, the 
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claim amounts are simply corrected through an as-if index which does not consider the underlying insurance portfolio evolution: 

for instance, if the cedent writes bigger risks, bigger losses can be expected. 

It is also important to note that if the total number of historical claims above a certain threshold covered by the treaty is insufficient, 

additional data must be sought from the cedents, if possible. In such situations, the exposure rating method, which will be detailed 

later, can officiate as an alternative approach.  

To clarify the approach used, a specific XL treaty with the following parameters will be studied throughout this part: 

• Limit: 1 500 000 €.  

• Retention: 1 000 000 €.  

• Reinstatement: 3 reinstatements available, each at 100% of the original premium. 

• Indexation Clause: None.  

• Loss Basis: Loss Occurring (losses are covered based on when they occur, regardless of the policy's inception date). 

• AAD/AAL: No Annual Aggregate Deductible (AAD) and an Annual Aggregate Limit (AAL) of 6 000 000 €, 

covering only one cedent and one risk classification. 

This XL treaty will be referred to as “XL treaty number 1”. 

5.1.1 Frequency modeling 

Let us (𝑁𝑖)1≤𝑖≤𝑛 represent the vector of observations corresponding to the ultimate number of claims recorded per attachment year 

for the considered generator. 

In the context of frequency distribution modeling, the candidate distributions used to model claims frequency are some of the 

(a,b,1) class from (Klugman, Panjer, & Willmot, 2012):  

• Poisson distribution 

• Negative Binomial distribution 

• Binomial distribution 

The main properties of each distribution are described in Appendix A.  

5.1.1.1 Parametric estimation  

The figure below highlights the historical ultimate number of claims reported to AXA Group Ceded Re for the XL treaty number 

1. Over time, the number of claims has decreased, primarily due to a reduction in exposure.  
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Figure 32: Historical ultimate number of claims of the XL treaty number 1 

Once the historical claims data has been collected, the next step is to estimate the parameters of each candidate distribution to 

calibrate the frequency model. Let us note 𝜃 the vector corresponding to the parameters of the distribution and 𝑓(𝑥; 𝜃) the 

probability density function distribution.  

To estimate 𝜃, it would be possible to use the distribution (𝑁𝑖)1≤𝑖≤𝑛 of the ultimate number of annual claims. However, this 

methodology would not consider changes in exposure for the incoming year. Let us note 𝐸𝑛+1 the exposure value of the incoming 

year (for the purposes of this report, this year would correspond to 2025 but here 2024 has been retained due to a lack of data). 

Using the historical ultimate number of claims distribution, one can calculate the estimator 𝜆̂ =
∑ 𝑁𝑖
𝑛
𝑖=1

∑ 𝐸𝑖
𝑛
𝑖=1

 and deduce an estimator of 

the average number of ultimate claims per year for the coming year 𝜇𝑁̂ = 𝜆̂𝐸𝑛+1. Concerning the variance of the ultimate number 

of claims per year, one can make the additional assumption, aligned with the Schnieper model, that 𝑉𝑎𝑟(𝑁𝑖) = 𝜎
2𝐸𝑖. From this 

assumption, we derive the estimator 𝜎 2̂ = 
1

𝑛−1
∑

(𝑁𝑖−𝜆̂𝐸𝑖)
2

𝐸𝑖

𝑛
𝑖=1  and the variance of the number of ultimate claims per year 𝜎𝑁

2̂ =

 𝜎 2̂ 𝐸𝑛+1. The parameters of the frequency distribution can thus be computed from the mean 𝜇𝑁̂ and the variance 𝜎𝑁
2̂ using the 

method of moments. 

The method of moments is a statistical method which enables us to estimate the parameters of a probability distribution. It is based 

on the equalization of the theoretical and empirical moments of a considered distribution. The moments of a distribution are 

measures that summarize certain characteristics of the distribution, such as mean (moment of order 1), variance (moment of order 

2), skewness (moment of order 3), and kurtosis (moment of order 4). The empirical moments are then equated with the theoretical, 

leading to a system of equations. To estimate k parameters, the first k moments are considered. Solving the system of equations 

yields the parameter estimators. 

Since the candidate distributions have at most two parameters, only the first two moments (theoretical and empirical) are exploited 

for parameter estimation. Regarding the empirical moments, the moments previously calculated can be used (𝑚1 = 𝜇𝑁̂ and 𝑚2 =

𝜎𝑁
2̂ ). Solving the moments systems yields the following parameter estimators for each of the candidate distributions: 
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• Poisson distribution : 𝜆̂ = 𝜇𝑁̂  

• Negative Binomial distribution: 𝑛̂ =
𝜇𝑁̂ ̂

2

𝜎𝑁
2̂−𝜇𝑁̂

 and 𝑝̂ =
𝜇𝑁̂

𝜎𝑁
2̂  

• Binomial distribution: 𝑛̂ =
𝜇𝑁̂ ̂

2

𝜇𝑁̂−𝜎𝑁
2̂  and 𝑝̂ = 1 −

𝜎𝑁
2̂

𝜇𝑁̂̂
 

5.1.1.2 Frequency distribution selection 

Once the parameters have been estimated for each distribution (if possible), the frequency model that best matches the observations 

is to be selected. The method proposed to select the best frequency distribution is relatively simple and is based on the properties 

of each distribution using the dispersion ratio 
𝜎𝑁
2̂

𝜇𝑁̂
: 

• The Negative Binomial distribution is chosen if the dispersion ratio exceeds 1.1, since the Negative Binomial 

distribution inherently allows the variance to be greater than the mean. 

• The Poisson distribution is picked if the dispersion ratio is between 0.9 and 1.1, as the Poisson distribution has the 

same mean and variance. 

• Binomial distribution is considered if the dispersion ratio is less than 0.9, because the Binomial distribution has a 

smaller variance than the mean. 

For the XL treaty under analysis: 

• The estimated mean 𝜇𝑁̂ is 13.87. 

• The estimated variance 𝜎𝑁
2̂ is 58.35. 

• The dispersion ratio 
𝜎𝑁
2̂

𝜇𝑁̂
 exceeds 1.1. 

Thus, the Negative Binomial distribution is selected for modeling annual claims frequency. The parameters of the Negative 

Binomial distribution are: 

• 𝑛̂ = 4.33 

• 𝑝̂ = 0.24 

The density functions of the Poisson and Negative Binomial distributions, calibrated on the coverage scope of the considered XL 

treaty, are compared in the figure below. The Binomial distribution could not be calibrated, as the variance exceeded the mean, 

making it unsuitable. 
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Figure 33: Comparison of Poisson and Negative Binomial probability distribution - XL treaty number 1 

5.1.2 Severity modeling 

Once the frequency distribution has been chosen and can be modeled, the severity distribution must be calibrated. Let (𝑋𝑖)1≤𝑖≤𝑛 

represent the as-if ultimate amounts related to a considered loss generator, which is assumed to be a set of continuous iid random 

variables. The figure below presents the historical distribution of claims for the XL treaty number 1, showing both the reserve 

amounts, the paid amounts, and the as-if ultimate amounts, with 448 claims, spanning from 1995 to 2024. Out of this historical 

data, only 13 claims have consumed the capacity.  

 

     

Figure 34: Distribution of historical as-il ultimate claims - XL treaty number 1 
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Figure 35: Density of historical as-if ultimate claims - XL treaty number 1 

A large array of both parametric and non-parametric continuous distributions were considered as severity models candidates.  

5.1.2.1 Continuous severity distributions 

First, let us assume that the severity distribution is the same for the entire range of possible claim sizes, without any specific 

consideration for the tail of the distribution. Thus, a continuous distribution is fitted on all observations (𝑋𝑖)1≤𝑖≤𝑛. The list below 

exhibits the so-called continuous severity distributions that are calibrated on all observations: 

• Exponential distribution 

• Log-Normal distribution.  

• Gamma distribution 

• Generalized Pareto distribution 

• Weibull distribution 

• Fréchet distribution 

• Estimation by kernel method 

These distributions have been selected within the context of modeling large claims in reinsurance: distributions with heavier tails 

are thus expected (except for the gaussian kernel and exponential distribution1). Additionally, all these distributions are defined 

on a positive and unbounded support, which is the appropriate domain here. The parameters and properties of each distribution 

are listed in Appendix B. 

5.1.2.2 Spliced severity distributions 

Large claims liable to exceed the retention of XL reinsurance treaty can significantly vary in size. Fitting a single distribution 

across the entire range of those atypical claims could lead to a poor fit regarding the tail of the distribution. This is problematic 

because the underlying risk distribution tails are crucial for accurately modeling XL treaties, where retentions are typically high. 

 
1 The exponential distribution is often considered a reference distribution to compare distribution tails which justifies its use. 
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A well-fitting severity model that captures the entire range of loss sizes - ranging from many smaller claims to a few large ones - 

is thus needed for effectively modeling severity.  

One way to deal with this problem is by fitting a spliced distribution. The basic idea here is to stick pieces of two (or more) 

different distributions together. An 𝑚-component spliced distribution then has a density 𝑓(. ) expressed as: 

𝑓(𝑥) =  

{
  
 

  
 𝜋1

𝑓1(𝑥)

𝐹1(𝑐1) − 𝐹1(𝑐0)
,  𝑐0 < 𝑥 ≤ 𝑐1 

…
…
…

𝜋𝑚
𝑓𝑚(𝑥)

𝐹𝑚(𝑐𝑚) − 𝐹𝑚(𝑐𝑚−1)
,  𝑐𝑚−1 < 𝑥 ≤ 𝑐𝑚  

 

Where 𝜋𝑖 > 0 and ∑ 𝜋𝑗
𝑚
𝑗=1 = 1 and 𝑓𝑗 , respectively 𝐹𝑗 for 𝑗 = 1, . . , 𝑚 are densities and CDFs of random variables. Restrictions 

on the parameters can be imposed, requiring continuity of the density 𝑓𝑗 at the junction points 𝑐𝑗. 

For the sake of simplicity and to have enough data to fit severity distributions, we will restrict ourselves to the case of 𝑚 = 2. 

Furthermore, a spliced distribution will only be fitted when the number of historical claims is sufficient, i.e., more than 50 in this 

work. The table below indicates the spliced distributions implemented in this actuarial work: 

Table 21: Spliced severity distribution retained for severity modeling 

Bulk Distribution Tail Distribution 

Normal 

Log-Normal 

Gamma 

Weibull 

Gaussian Kernel 

Mixed Erlang 

GPD 

Pareto (only for a Mixed Erlang bulk distribution) 

  

We will now discuss the properties of the Mixed Erlang distribution and explain our choice of the Pareto and Generalized Pareto 

distributions to model the tail distribution. 

5.1.2.2.1 Mixed Erlang 

The Erlang distribution is a two-parameter family of continuous probability distributions with support 𝑥 𝜖[0; +∞). The two 

parameters are a positive integer 𝑟 defined as the shape of the distribution and a positive real number 𝜆 defined as the rate. Let 

𝑟 ∈ ℕ and 𝜆 > 0.  We list below the various properties of the random variable 𝑋 which we assume to follow an Erlang distribution 

with parameters 𝑟 and 𝜆: 

• Probability density: For all 𝑡 ∈ ℝ+∗, 𝑓(𝑡) =
𝜆𝑘𝑡𝑘−1 exp(−𝜆𝑡)

(𝑘−1)!
 

• Mean: 𝔼(𝑋) =
𝑟

𝜆
 

• Variance: 𝑉𝑎𝑟(𝑋) =
𝑟

𝜆2
 

In this work, a mixture of 𝑀 Erlang distributions defined with a common scale parameter 𝜆 was considered. The density function 

of such distribution for 𝑡 > 0 is:  

𝑓𝑀𝐸(𝑡, 𝑟, 𝛼, 𝜆) = ∑
𝜆𝑟𝑗𝑡𝑟𝑗−1 exp(−𝜆𝑡)

(𝑟𝑗 − 1)!

𝑀

𝑗=1
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where the positive integers 𝑟 = (𝑟1, … , 𝑟𝑀) with 𝑟1 < ⋯ < 𝑟𝑀 are the shape parameters of the Erlang distributions, and 𝛼 =

(𝛼1, … , 𝛼𝑀) > 0 with ∑ 𝛼𝑗
𝑀
𝑗=1  are the weights of the mixture. Mixed Erlang are also dense in the space of positive continuous 

distributions on ℝ+, which is an interesting property as it allows us to use a unique class of distributions to model different forms 

of distributions. 

5.1.2.2.2 Tail modeling with Extreme Value Theory 

The decision to model the tail of the distribution using a GPD distribution is based on Extreme Value Theory (EVT). To begin, let 

us introduce the Fisher-Tippet theorem, which characterizes the limiting behavior of normalized sample maxima. 

Fisher-Tippet Theorem: 

We define 𝑀𝑛 = 𝑚𝑎𝑥 {𝑋1, … , 𝑋𝑛}, where 𝑋1, … , 𝑋𝑛 is a sequence of independent random variables having a common unknown 

cumulative distribution function 𝐹. Suppose there exist sequences of real valued numbers {𝑎𝑛} > 0 and {𝑏𝑛} such that 𝑃(
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤

𝑡) → 𝐺(𝑡) as 𝑛 →  ∞ where 𝐺 is a non-degenerate distribution function. Then 𝐺 is of the same type1 as the following distribution 

called the Generalized Extreme Value distribution 𝐺𝐸𝑉𝜇,𝜎,𝛾: 

𝐺𝐸𝑉𝜇,𝜎,𝛾(𝑡) =

{
 
 

 
 
exp (−(1 + 𝛾 (

𝑡 − 𝜇

𝜎
))
+

− 
1
𝛾
−

), 𝛾 ≠ 0

exp(− exp(−
𝑡 − 𝜇

𝜎
)) , 𝛾 = 0 

 

 

Where 𝑥+ = max(𝑥, 0) and 𝜎 > 0. Thus, the GEV is defined on (𝜇 −
𝜎

𝛾
; +∞) for 𝛾 > 0, on (−∞; 𝜇 −

𝜎

𝛾
) for 𝛾 < 0 and on ℝ if 

𝛾 = 0. 

One can thus define the max-domain of attraction, which contains the distributions for which the previous theorem applies. Within 

the max-domain of attraction, distributions can be described in terms of extremal classes using the tail quantile function. Given 

that 𝐹 is a CDF, its quantile function is defined by the inverse function 𝑄(𝑝) = inf{𝑥|𝐹(𝑥)  ≥  𝑝} , 𝑝 ∈  (0, 1). The tail quantile 

function is thus 𝑈(𝑡) = 𝑄 (1 −
1

𝑡
) , 𝑡 > 1. One can say that 𝐹 belongs to the extremal class 𝐶𝛾(𝑎) if there exists 𝛾 ∈ ℝ and an 

ultimately positive function 𝑎(. ) such that: 
|𝑈(𝑡𝑧)−𝑈(𝑡)|

𝑎(𝑡)
→ ∫ 𝑣𝛾−1𝑑𝑣

𝑧

1
 for all 𝑧 ≥ 1 as 𝑡 → ∞. Depending on the value of 𝛾, one can 

define the three extremal classes: 

• The Fréchet/Pareto class when 𝛾 > 0 

• The Gumbel class when 𝛾 = 0 

• The extremal Weibull class when 𝛾 < 0 

The following table displays some of the previous distributions that belong to a max-domain of attraction, with their tail 

characteristics: 

 

 

 

 

 
1 If 𝐹1 and 𝐹2 are two distribution functions and there exist constants 𝑎 >  0 and b such that 𝐹2(𝑎𝑥 +  𝑏)  =  𝐹1(𝑥) for all 𝑥 then 𝐹1 and 𝐹2 are of the same type. 
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Table 22: Overview of extremal classes and their component distributions 

Distribution  Extremal class 𝑪𝜸(𝒂) Sign of 𝜸 Tail 

Beta  Extremal Weibull 𝛾 < 0 Light tail 

GPD (𝛾 < 0) Extremal Weibull 𝛾 < 0 Light tail 

Exponential and GPD 

(𝛾 = 0) 

Gumbel 𝛾 = 0 Light tail 

Weibull (𝛼 > 1) Gumbel 𝛾 = 0 Light tail  

Weibull (𝛼 < 1) Gumbel 𝛾 = 0 Heavy tail  

Log-Normal Gumbel 𝛾 = 0 Heavy tail  

Gamma Gumbel  𝛾 = 0 Heavy tail 

GPD (𝛾 > 0) Fréchet/Pareto 𝛾 > 0 Heavy tail 

Pareto Fréchet/Pareto 𝛾 > 0 Heavy tail 

Fréchet Fréchet/Pareto 𝛾 > 0 Heavy tail 

 

Rather than modeling block maxima of losses' amounts, we are more interested in the modeling of extremes losses over a high 

threshold 𝑢 to model the tail of the distribution. The distribution of excesses over a high threshold 𝑢 is defined as 𝐹𝑢(𝑥) =

 ℙ(𝑋 − 𝑢 ≤  𝑥 | 𝑋 > 𝑢) for 0 ≤  𝑥 ≤  𝑥𝐹   −  𝑢 where 𝑥𝐹 = sup {𝑥 ∶  𝐹(𝑥) > 1}. 

The following theorem states that the convergence of the maximum of appropriately normalized iid random variables is equivalent 

to the convergence of the exceedance distribution to a Generalized Pareto Distribution (GPD): 

Let 𝜇 ∈ ℝ, 𝜎 > 0 and 𝛾 ∈ ℝ and 𝑡𝐹 = sup {𝑥 ∶  𝐹(𝑥) > 1}. The following propositions are equivalent: 

Prop 1: There exist two sequences 𝑎𝑛 and 𝑏𝑛 such that: 

𝑃 (
𝑀𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑡) = [𝐹(𝑎𝑛𝑡 +  𝑏𝑛)]
𝑛  
𝑛→∞ 
→    𝐺𝐸𝑉𝜇,𝜎,𝛾(𝑡). 

Prop 2: There exists a positive function 𝜎(. ) such that: 

lim
𝑢→𝑡𝐹

sup
𝑡∈[0,𝑡𝐹−𝑢)

| 𝐹𝑢(𝑡) − 𝐺𝑃𝐷𝜎(𝑢),𝛾(𝑡) | = 0 

Where 𝐺𝑃𝐷𝜎(𝑢),𝛾 is defined in Appendix B.  

Thus, the GPD is the natural model for the distribution of excess values above sufficiently high thresholds. One can also notice 

the following relationship between the GEV and the GPD: 

𝐺𝑃𝐷𝜎,𝛾(𝑡) = 1 + log( 𝐺𝐸𝑉0,𝜎,𝛾(𝑡)) 

In this actuarial project, the GPD has been adopted for modeling the tail of the distribution, as it represents the theoretical limit 

for distributions above a threshold and can model both heavy and light tails, depending on the shape parameter 𝛾. This approach 

is thus known as the Peaks-Over-Threshold (POT) method. Additionally, the Pareto distribution has also been added for 

comparison to the spliced Mixed Erlang distribution given that most claims exhibit heavy-tailed characteristics. However, since 

the GPD is a limit distribution, incorporating alternative distributions, such as the Fréchet distribution for heavier tail, or the Log-

Normal/Weibull distribution for lighter tail, could enhance the range of tail modeling options. Furthermore, practical problems 

can arise when using GPD or Pareto distributions. Indeed, these models may allocate some probability mass to loss amounts that 

are unrealistically large, without any consideration to the maximum possible loss amount. Thus, using upper-truncation of a Pareto-

type distribution such as the GPD can be of interest to address this issue and could be a future improvement of the methodology.  
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5.1.2.3 Parameter estimation 

We will now proceed with the estimation of the parameters for our different candidate distributions. 

5.1.2.3.1 In the case of simple severity distributions 

In the case of distributions defined in 5.1.2.1,  two methods will be considered for parametric estimation: 

• Maximum likelihood estimation (see Appendix C) 

• Estimation using the method of moments (see 5.1.1.1) 

For each of the continuous severity distributions, these two parameter estimation methods will be applied. Additionally, 

normalizing the ultimate loss distributions will be performed to facilitate the parameter estimation process if necessary.  

Other methods can be developed for estimating the parameters of a distribution such as percentile matching or least square 

estimation. Percentile matching is similar to the method of moments and consists in equalizing arbitrarily chosen theoretical and 

empirical percentiles. The least square estimation, also known as the method of probability plotting, works by linearizing the 

theoretical CDF and then using least squares estimation to determine regression parameters, which are subsequently used to derive 

the parameters of the probability distribution. These methodologies have not been implemented in the tool but could be considered 

for future development. 

5.1.2.3.2 In the case of spliced severity distributions 

For spliced severity distributions, the number of parameters to be determined is slightly greater. Indeed, one needs to estimate the 

parameters of the distributions considered for the bulk and tail of the severity distribution, as well as the threshold at which the 

distribution changes, and the weights 𝜋1 and 𝜋2 of the spliced distribution. 

However, before opting to fit a spliced distribution, it is necessary to examine the tail of the distribution to determine whether it 

can be properly modeled by a Generalized Pareto Distribution or a Pareto. 

A preliminary criterion is to examine the shape of the distribution tail. Let us introduce the notion of QQ plot. By denoting 𝑞̂𝑖 as 

the quantiles of the empirical distribution and 𝑞𝑖 as those of the theoretical distribution, the QQ plot represents the points 𝑀(𝑞̂𝑖 , 𝑞𝑖). 

If the two distributions being compared are similar, the points in the QQ plot will align along a straight line. Conversely, deviations 

from the straight line indicate differences between the theoretical and observed distributions. This graph is particularly useful for 

assessing the quality of fit and will be analyzed once various distributions have been fitted. To analyze tail shapes, specific types 

of QQ plots will be displayed.  

The first QQ plot to be constructed is the exponential QQ plot, which helps determine whether the claim distribution has a heavier 

tail than the exponential distribution. Let 𝑋1,𝑛 ≤ ⋯ ≤ 𝑋𝑛−𝑘+1,𝑛 ≤ ⋯ ≤ 𝑋𝑛,𝑛 be the ordinate vector of observations. The 

exponential QQ plot is defined as (− log (1 −
𝑖

𝑛+1
) ; 𝑋𝑖,𝑛). If the data originates from a distribution with a tail heavier than the 

exponential, which is expected when modeling large claims, the exponential QQ plot will ultimately exhibit a convex shape. 

Conversely, for tails lighter than the exponential, the QQ plot will eventually appear concave. In the following example (Figure 

36), the exponential QQ plot is ultimately convex, indicating a tail heavier than the exponential distribution. However, this 

characteristic is less pronounced in the case of the XL treaty studied in this section (Figure 37). Indeed, while the exponential QQ 

plot is convex, it is noticeably less marked compared to Figure 36. This suggests that the tail of the distribution is only slightly 

heavier than the exponential distribution, implying that the extreme value index 𝛾 is positive but close to 0. 
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Figure 36: Example of exponential QQ-plot 

 

Figure 37: Exponential QQ-plot – XL treaty number 1  

If the exponential QQ plot is ultimately convex, the next step is to examine Log-Normal or Pareto QQ-plots to gain insights into 

the value of the extreme value index 𝛾 and the tail behavior: 

• The Pareto QQ-plot is defined as (− log (1 −
𝑖

𝑛+1
) ; log(𝑋𝑖,𝑛)) 

• The Log-Normal QQ-plot is defined as (𝜙−1 (
𝑖

𝑛+1
) ; log(𝑋𝑖,𝑛)), where 𝜙−1 is the inverse of the standard Normal 

cumulative distribution function. 
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These plots allow us to visually assess whether the tail behavior aligns with a Log-Normal or Pareto distribution, based on the 

linearity observed in the upper tail of the plot. 

In the following example, the data appears to exhibit a Pareto tail behavior, as indicated by the linearity observed in the upper end 

of the Pareto QQ plot. This suggests that the extreme value index 𝛾 is strictly positive.  

 

Figure 38: Pareto QQ plot – XL treaty number 1 

However, since the Log-Normal QQ plot also exhibits a linear trend, we can expect the extreme value index 𝛾 to be close to 0, as 

the Log-Normal distribution belongs to the Gumbel domain of attraction, characterized by an extreme value index equal to 0. 

 

Figure 39: Log-Normal QQ plot of the XL treaty number 1 
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Choice of threshold and weights 𝝅𝟏 and 𝝅𝟐   

Once the relevance of modeling the distribution trial using a GPD has been established, as part of the Peaks-Over-Threshold 

approach, the appropriate threshold 𝑢 and the weights of our spliced distribution must be determined. In practice, the most critical 

step is the threshold selection. Using a low threshold increases the amount of data, but the approximation by the GPD becomes 

less accurate. On the other hand, using a too high threshold reduces the amount of data available, making the estimates of the tail 

distribution parameters less reliable. Several methods are available for choosing an appropriate threshold, but keeping in mind the 

operational objective of simplifying the tool's use as much as possible, only two methods were employed: 

• By graphical method  

• By minimizing the approximate mean squared error 

Let us look at threshold determination using the graphical method.  

As a first step, we can graphically estimate the threshold 𝑢 using the mean excess function. Indeed, suppose that exceedances 

(𝑋𝑖 − 𝑢)1≤𝑖≤𝑛 above the threshold 𝑢 follow a distribution 𝐺𝑃𝐷𝜎(𝑢),𝛾 such that ℙ(𝑋 − 𝑢 < 𝑥 |𝑋 >  𝑢) =  1 − (1 + 𝛾 (
𝑥

𝜎(𝑢)
))
+

− 
1

𝛾

.  

If 𝑋 − 𝑢 | 𝑋 > 𝑢 ~ 𝐺𝑃𝐷𝜎(𝑢),𝛾then for 𝑣 > 𝑢 then 𝔼(𝑋 − 𝑣 |𝑋 > 𝑣) =  
𝜎(𝑢)+𝛾(𝑣−𝑢)

1−𝛾
 : 𝔼(𝑋 − 𝑣 |𝑋 > 𝑣) is therefore linear in 𝑣 

beyond the threshold 𝑢. 

Based on the sample (𝑋𝑖)1≤𝑖≤𝑛 the mean excess function 𝑒(𝑡)  =  𝔼(𝑋 −  𝑡|𝑋 >  𝑡) can then be estimated: 

𝑒𝑛̂(𝑡) =
∑ 𝑋𝑖
𝑛
𝑖=1 1𝑡,∞(𝑋𝑖)

∑ 1𝑡,∞(𝑋𝑖)
𝑛
𝑖=1

− 𝑡 

Let 𝑋1,𝑛 ≤ ⋯ ≤ 𝑋𝑛−𝑘+1,𝑛 ≤ ⋯ ≤ 𝑋𝑛,𝑛 be the ordinate vector of observations. The value 𝑡 is here equal to the (𝑘 + 1)-largest 

observation 𝑋𝑛−𝑘,𝑛 of the data points for some 𝑘 = 0, 1, … 𝑛 − 1. Thus, one has: 

𝑒𝑘,𝑛 = 𝑒𝑛̂(𝑋𝑛−𝑘,𝑛) =
1

𝑘
∑𝑋𝑛−𝑗+1,𝑛

𝑘

𝑗=1

− 𝑋𝑛−𝑘,𝑛 

The mean excess plot can be displayed by plotting values 𝑒𝑘,𝑛 as a function of the threshold 𝑋𝑛−𝑘,𝑛 or as a function of the inverse 

rank 𝑘. If the random variable follows a GPD above the threshold, 𝑢 then the mean excess plot (𝑡, 𝑒𝑛̂(𝑡)) should be approximately 

linear. Furthermore, when the tail of the distribution exhibits a heavy tail, the mean excess function should increase for small 

values of 𝑘. In contrast, for lighter tails, the mean excess plot is expected to decrease. 

In the following example, the mean excess plot of claims covered by the same XL treaty as in Figure 36 has been plotted. Since 

for small values of 𝑘, the mean excess plot increases, one suspects a tail heavier than the exponential distribution, which is 

consistent with the previous exponential QQ-plot. One can also observe a linear behavior up to approximately 𝑘 = 40, which 

suggests modeling the tail distribution using a GPD. This corresponds to a threshold of approximately 4 million euros. The 

threshold value indicated on the graph corresponds to the threshold selected during the minimization of the AMSE (Average Mean 

Squared Error), a method that will be described later.  
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Figure 40: Example of a mean excess plot 

For the XL treaty considered, the linear trend of the mean excess plot is less apparent: the mean excess plot does not directly 

suggest modeling the tail distribution with a GPD, even if a linear trend does seem to emerge for high threshold. 

 

 

Figure 41: Mean excess plot – XL treaty number 1 
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Faced with the uncertainty in determining the threshold graphically, other graphs that can help identify the threshold can be used. 

By estimating the parameter 𝛾 of the GPD, it is also possible to determine the threshold graphically. If we suppose that 𝛾 > 0, i.e. 

assuming the distribution belongs to the Pareto domain of attraction, the most popular estimator of 𝛾 is the Hill estimator: 

𝛾𝑘,𝑛
𝐻𝑖𝑙𝑙 = 

1

𝑘
∑(log(𝑋𝑛−𝑖+1,𝑛) − log(𝑋𝑛−𝑘,𝑛)) 

𝑘

𝑖=1

 

The Hill estimator can be interpreted as an estimate of the mean excess function of the log-transformed data, which is  

𝑒log (X)(log (𝑡)) =  𝔼(log( 𝑋) − log( 𝑡) |𝑋 >  𝑡) with the threshold value 𝑡 substituted by 𝑋𝑛−𝑘,𝑛. Using this estimator, one can 

define the Hill plot as ((𝑘, 𝛾𝑘,𝑛
𝐻𝑖𝑙𝑙))

1≤𝑘≤𝑛
. The Hill plot is a common graph for examining the estimates of the extreme value index 

𝛾 > 0 and determining the optimal threshold rank 𝑘∗. Since the Hill estimator is weakly convergent, the plot becomes horizontal 

for 𝑘 > 𝑘∗, indicating stability in the estimation of 𝛾. Based on this, the threshold 𝑢 can be set as 𝑋𝑛−𝑘∗,𝑛, the value corresponding 

to the rank 𝑘∗ in the ordered data. 

To allow tail modeling with Log-Normal or Weibull tails, one must incorporate the case where the 𝛾 can be 0 or negative. For 

𝛾 ∈ ℝ, (Albrecher, Beirlant, & Teugels) introduce the Generalized Hill estimator as: 

𝛾𝑘,𝑛
𝐺𝑒𝑛 𝐻𝑖𝑙𝑙 =

1

𝑘
∑log(𝑈𝐻𝑗,𝑛) − log(𝑈𝐻𝑘+1,𝑛)

𝑘

𝑗=1

 

Where 𝑈𝐻𝑗,𝑛 = 𝑋𝑛−𝑗,𝑛𝛾𝑗,𝑛
𝐻𝑖𝑙𝑙 .  

As for the Hill estimator, one can plot ((𝑘, 𝛾𝑘,𝑛
𝐺𝑒𝑛 𝐻𝑖𝑙𝑙))

1≤𝑘≤𝑛
 and select the appropriate threshold rank 𝑘∗ and the appropriate 

threshold 𝑢 = 𝑋𝑛−𝑘∗,𝑛 when the estimator converges. 

The second method for choosing an appropriate threshold is based on minimizing the mean squared error of the Hill estimator. 

𝛾𝑘,𝑛
𝐻𝑖𝑙𝑙  estimator used to estimate 𝛾 when 𝛾 > 0. (Albrecher, Beirlant, & Teugels) approximate the mean squared error of the 

estimator 𝛾𝑘,𝑛
𝐻𝑖𝑙𝑙  by: 

𝐴𝑀𝑆𝐸(𝛾𝑘,𝑛
𝐻𝑖𝑙𝑙) =

𝛾2

𝑘
+ (

𝑏𝑘,𝑛
1 + 𝛽

)
2

 

Where the parameters 𝛾, 𝑏𝑘,𝑛 and 𝛽 are estimated by non-linear regression of 𝑍𝑗 = (𝛾 + 𝑏𝑘,𝑛 (
𝑗

𝑘+1
)
𝛽

) 𝐸𝑗  for 𝑗 = 1,… , 𝑘. 𝐸𝑗 denotes 

a sequence of independent standard exponentially distributed random variables and 𝑍𝑗 = 𝑗(log(𝑋𝑛−𝑗+1,𝑛) − log(𝑋𝑛−𝑗,𝑛)). The 

appropriate threshold rank 𝑘∗ and the appropriate threshold 𝑢 = 𝑋𝑛−𝑘∗,𝑛 are then chosen by taking the value 𝑘∗ for which 

𝐴𝑀𝑆𝐸(𝛾𝑘∗,𝑛
𝐻𝑖𝑙𝑙) is minimal. For the treaty considered in this part, since we consider that the extreme value index is positive, one can 

compute the AMSE. In our case, the AMSE is minimal for 𝑘∗ = 24 which corresponds to a threshold 𝑢 = 838 379 € (see Figure 

42).  
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Figure 42: AMSE plot of the XL treaty number 1 

The choice of the threshold appears reasonable, as the value of the extreme value index seems to converge for both the generalized 

estimator and the simple Hill estimator, as illustrated in the figure below. Therefore, the threshold 𝑘∗ = 24 is retained. 

 

Figure 43: Hill plot of the XL per risk number 1  

The method of estimating the threshold by minimizing the error is applied only in the case where it is suspected that 𝛾 > 0., which 

is the case for most treaties. Else, the threshold 𝑢 will be estimated graphically using the Hill and mean excess plot. Concerning 
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the weight estimates 𝜋1̂ and 𝜋2̂ of the spliced distribution, these will be set by 𝜋1̂ = 1 −
𝑢

𝑋𝑛,𝑛,
 and 𝜋2̂ = 1 − 𝜋1̂ where 𝑢 is the 

chosen threshold. In our case, 𝜋1̂ ≈ 0.4 and 𝜋1̂ ≈ 0.6. 

To wrap up, the discussed EVT plots and their corresponding properties are listed below   

Table 23: Description of EVT plots 

Plot Formula Information 

Exponential QQ plot 
(− log (1 −

𝑖

𝑛 + 1
) ; 𝑋𝑖,𝑛) 

A linear exponential QQ plot indicates an exponential 

distribution. The slope of the plot can be used as an 

estimate of the distribution’s parameter. An ultimately 

convex/concave exponential QQ plot indicates a tail 

heavier/lighter than the exponential. 

Pareto QQ plot 
(− log (1 −

𝑖

𝑛 + 1
) ; log(𝑋𝑖,𝑛)) 

An ultimately linear pareto QQ plot indicates a tail 

distribution that belongs to the Pareto class of 

distributions, i.e. with an extreme value index 𝛾 > 0 

Log-Normal QQ plot 
(𝜙−1 (

𝑖

𝑛 + 1
) ; log(𝑋𝑖,𝑛)) 

An ultimately linear Log-Normal QQ plot suggests a tail 

Log-Normal distribution. The extreme value index should 

be equal to 0. 

Mean Excess plot 

(𝑘,
1

𝑘
∑𝑋𝑛−𝑗+1,𝑛

𝑘

𝑗=1

− 𝑋𝑛−𝑘,𝑛) 
A horizontal mean excess plot indicates an exponential 

distribution. Convex or concave mean excess plot suggests 

a heavy or light tail, respectively. Additionally, if the mean 

excess plot is linear, the GPD can be used to model the tail 

of the distribution. 

Hill plot 

(𝑘,
1

𝑘
∑(log(𝑋𝑛−𝑖+1,𝑛) − log(𝑋𝑛−𝑘,𝑛))) 

𝑘

𝑖=1

 

The Hill plot is used to estimate the extreme value index. 

The optimal value of the extreme value index and the 

threshold should be selected at the point where the Hill 

plot begins to stabilize. 

 

Estimation of the parameters of the GPD 

Once the threshold 𝑢 has been picked, the parameters of the GPD used to model the tail of our severity distribution can be fitted. 

Since the GPD is the limit distribution of the excess values 𝑋 −  𝑢 given 𝑋 >  𝑢 when 𝑢 →  𝑥𝐹, assuming the Fisher-Tippet 

theorem holds, we aim to model the values 𝑌 = 𝑋 − 𝑢 given that 𝑋 > 𝑢 using the 𝐺𝑃𝐷𝜎(𝑢),𝛾 .  The MLE method will be employed 

to estimate the parameters 𝜎(𝑢), 𝛾. 

If the number of exceedances over 𝑢 is denoted by 𝑁𝑢, the log-likelihood is given by: 

𝑙(𝜎(𝑢), 𝛾 | 𝑌1, … , 𝑌𝑛) =  −Nulog (𝜎(𝑢)) − (
1

𝛾
+ 1)∑log(1 + 𝑌𝑖

𝛾

𝜎(𝑢)

𝑁𝑢

𝑖=1

) 

Using a reparameterization with 𝜏(𝑢) =  
𝛾

𝜎(𝑢)
, one has the log likelihood equations:  

{
 
 

 
 1

𝛾 + 1
=  
1

𝑁𝑢
∑

1

1 + 𝜏(𝑢)̂𝑌𝑖

𝑁𝑢

𝑖=1

𝛾 =  
1

𝑁𝑢
∑log(1 + 𝜏(𝑢)̂𝑌𝑖)

𝑁𝑢

𝑖=1

 

In our case, if we replace 𝑢 by its intermediate order statistic 𝑋𝑛−𝑘,𝑛 (which corresponds to the chosen threshold), one has: 
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{
 
 

 
 1

𝛾𝑘,𝑛̂ + 1
=  
1

𝑘
∑

1

1 + 𝜏𝑘,𝑛̂(𝑋𝑛−𝑗+1,𝑛 − 𝑋𝑛−𝑘,𝑛)

𝑘

𝑖=1

𝛾𝑘,𝑛̂ = 
1

𝑘
∑log( 1 + 𝜏𝑘,𝑛̂(𝑋𝑛−𝑗+1,𝑛 − 𝑋𝑛−𝑘,𝑛))

𝑘

𝑖=1

 

Solving the above equations leads to the MLE estimators.  

Furthermore, 𝛾𝑘,𝑛̂ − 𝛾 is asymptotically normal under some regularity conditions on the underlying distributions when 𝑘, 𝑛 →  ∞ 

and 
𝑘

𝑛
→ 0, with mean 0 and asymptotic covariance matrix given by: 

Σ𝛾𝑘,𝑛̂,𝜎𝑘,𝑛̂~ 
1 + 𝛾

𝑘
(
1 + 𝛾 −𝜎(𝑢)

−𝜎(𝑢) 2𝜎(𝑢)2
)  

This property allows us to build confidence intervals for the parameters 𝛾 and 𝜎(𝑢). 

The estimation of the parameters of the GPD in the splicing model will be done using the previous MLE method. 

Choice of parameters for bulk distribution 

To estimate the parameters for the bulk distribution, the MLE method described earlier will be used. The observations used for 

parameter estimation are (𝑋𝑖1𝑋𝑖≤𝑢)1≤𝑖≤𝑛
 where 𝑢 denotes the selected threshold. Density estimation using the kernel method will 

be performed directly on the previous observations. 

For the Mixed Erlang distribution, the parameters (𝛼, 𝜆) are estimated using the EM algorithm as developed by (Verbelen, Gong, 

Katrien , Badescu, & Sheldon). This algorithm consists of two steps, repeated iteratively until convergence: 

• E-step: Compute the conditional expectation of the log-likelihood given the observed data and previous parameter 

estimates. 

• M-step: Determine a subsequent set of parameter estimates in the parameter range through maximization of the 

conditional expectation computed in the E-step. 

For the number 𝑀 of ME components and the shapes 𝑟 = (𝑟1, … , 𝑟𝑀), we follow the method proposed by (Albrecher, Beirlant, & 

Teugels). The number 𝑀 of ME components is estimated using a backward stepwise search, starting from a certain upper value, 

whereby the smallest shape is deleted if this decreases an information criterion such as the BIC or the AIC (see 5.1.2.4). Moreover, 

for each value of 𝑀, the shapes 𝑟 = (𝑟1, … , 𝑟𝑀) are adjusted based on maximizing the likelihood starting from 𝑟 = (𝑠, … ,𝑀 ∗ 𝑠) 

where 𝑠 is a chosen spread factor. 

5.1.2.4 Selecting the severity distribution 

5.1.2.4.1 Ranking the distributions 

Once the different severity distributions have been fitted to the as-if ultimate historical claims amounts, they must be compared to 

each other and ranked in order to select the "best" one(s). To help us classify the different fits, statistical indicators will be 

examined. 

Statistical indicators 

➢ First, one can compare the relative differences between empirical and theoretical values of various statistics, such as the mean, 

standard deviation, and quantiles (for example extreme ones such as the 90th, 95th and 99th ones)  

➢ Furthermore, to compare the distributions fitted using MLE, indicators such as the Akaike Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC) can be relevant.  
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✓ The AIC helps in comparing different statistical models to determine which one best fits a given set of data while 

balancing model complexity. A lower AIC value suggests a better fit. The formula for AIC is provided below: 

𝐴𝐼𝐶 = 2𝑘 − ln(𝐿) 

where 𝑘 is the number of parameters and 𝐿 is the likelihood of the model. The AIC thus penalizes models for having 

more parameters to prevent overfitting. 

✓ The second criterion is the BIC. Like the AIC, the BIC is based on the likelihood function but includes a stricter penalty 

for models with more parameters. A lower BIC still indicates a better fit. The BIC is calculated as: 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln(𝐿) 

where 𝑘 is the number of parameters, 𝑛 is the number of observations in the data, 𝐿 is the likelihood of the model. 

➢ Finally, statistical tests and distance metrics can also be used to evaluate the goodness of fit. In this project, the Kolmogorov-

Smirnov (KS) test and the Cramer Von Misses (CVM) test have been retained  

✓ For the KS test, let us take an iid sample (𝑋𝑖)1≤𝑖≤𝑛 which is assumed to follow a probability distribution ℙ. The null 

hypothesis is: 𝐻0 the distribution ℙ has the distribution function 𝐹0 where 𝐹0 is the distribution function of a given 

continuous distribution. The main idea of the test is that if the null hypothesis is true, the empirical cumulative distribution 

function 𝐹𝑛̂(𝑥) =  
1

𝑛
∑ 1𝑋(𝑖)≤𝑥 
𝑛
𝑖=1 should be close to 𝐹0. 

The distance between the empirical distribution function and the function 𝐹0 is measured by the Kolmogorov-Smirnov 

distance. To calculate it, one evaluates the difference between 𝐹𝑛̂(𝑥) and 𝐹0(𝑥) at the points (𝑋(𝑖)): 

𝐷𝐾𝑆(𝐹0, 𝐹𝑛̂) = max 
𝑖=1,…,𝑛

{|𝐹0(𝑋(𝑖)) −
𝑖

𝑛
| , |𝐹0(𝑋(𝑖)) −

𝑖 − 1

𝑛
|} 

Under the null hypothesis 𝐻0, one can prove that for all 𝑡 >  0: 

lim
𝑛 →+∞

ℙ(√𝑛 𝐷𝐾𝑆(𝐹0, 𝐹𝑛̂) > 𝑡) = 2∑(−1)𝑘+1 exp(−2𝑘2𝑡2)

+∞

𝑘=1

 

In practice, for 𝑡 >  0.56, the sum of the first three terms already provides an approximation with an error less than 10−4. 

If the null hypothesis 𝐻0 is false, √𝑛 𝐷𝐾𝑆(𝐹0, 𝐹𝑛̂) tends towards +∞ as 𝑛 increases. The test is therefore necessarily one-

sided to the right (rejecting overly large values). If we define the test statistic by 𝑡 = √𝑛 𝐷𝐾𝑆(𝐹0, 𝐹𝑛̂), the corresponding 

p-value is approximately 2∑ (−1)𝑘+1 exp(−2𝑘2𝑡2)+∞
𝑘=1 . We reject the null hypothesis if the p-value is inferior to the 

considered level 𝛼 = 0.05.  

➢ The CVM test can also be used to test the goodness-of-fit of a distribution, but unlike the KS test, it is based on a quadratic 

measure of the difference between the empirical and theoretical CDFs. The CVM test computes the average squared 

difference between the empirical CDF 𝐹𝑛̂  and the theoretical CDF 𝐹0. It considers the entire range of differences, rather 

than focusing only on the largest difference, as the KS test does. The CVM distance is being defined as follows:  

𝐷𝐶𝑉𝑀(𝐹0, 𝐹𝑛̂)
2
= 𝑛∫ |𝐹𝑛̂(𝑥) − 𝐹0(𝑥)|

2𝑑𝐹0(𝑥)
+∞

−∞

 

Ranking metric 

On the basis of the statistical indicators introduced previously and computed for all the candidate fitted severity distributions, the 

following methodology to rank those fits and highlight the most suitable ones have been adopted. 

First, for each of the fitted distributions, the following indicators are considered: 
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Table 24: Considered ranking metrics 

Metrics 

Mean (absolute relative difference1) 

Quantile 90th (absolute relative difference) 

Quantile 99th (absolute relative difference) 

Negative log likelihood 

KS distance 

CVM distance 

  

The AIC and BIC were not considered because both are based on the log-likelihood, which could result in it having a 

disproportionate influence in the ranking of fitted distributions. However, we could consider an indicator that represents the 

average of the BIC, AIC, and the negative log-likelihood, thereby accounting for the degrees of freedom of each distribution in 

the global ranking.  

For a fitted distribution, the objective is to minimize each of these indicators to guarantee a good fit. Thus, for each indicator, 

distributions are ranked in ascending order. For example, considering the KS distance, the distribution with the lowest KS distance 

will be assigned the highest rank for this indicator, i.e. the first rank. From there, if we note (𝑅𝑎𝑛𝑘𝑖)1≤𝑖≤6 the rank per indicator 

of a fitted distribution, a global ranking index is calculated for each fitted distribution: 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑟𝑎𝑛𝑘 𝑖𝑛𝑑𝑒𝑥 =
1

6
∑𝑅𝑎𝑛𝑘𝑖

2

6

𝑖=1

  

The fitted distributions are then definitively ranked according to this index, with the distribution having the lowest 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑟𝑎𝑛𝑘 𝑖𝑛𝑑𝑒𝑥 being the distribution considered the most appropriate. 

Regarding the treaty we aimed to price, given that the number of observations exceeded 50, all the spliced and continuous 

distributions were fitted. Among these, only the top four distributions identified through the previously established ranking 

methodology were retained. The table below presents the values of the metrics calculated to determine this ranking, while the p-

values for KS and CVM test are also provided for reference. The term GAMMA_MME denotes the Gamma distribution obtained 

with the method of moments, while the ME_GPD (respectively ME_PARETO) corresponds to the Mixed Erlang with a GPD 

(respectively Pareto) tail.  

Table 25: Fitting comparison - XL treaty number 1 

Distributions Mean Standard 

deviation 

Quantile 

(90) 

Quantile 

(99) 

Log 

likelihood 

KS 

distance 

KS  

p-value 

CVM 

distance 

CVM 

p-value 

OBSERVED 339 890 257 157 637 695 1 223 812 / / / / / 

GAUSSIAN_KERNEL 340 096 261 266 643 334 1 245 726 / 0,03 0,88 0,05 0,89 

ME_GPD 339 947 252 940 599 222 1 294 909 -60,86 0,04 0,53 0,11 0,55 

ME_PARETO 340 551 263 407 598 924 1 287 995 -60,93 0,04 0,55 0,11 0,56 

GAMMA_MME 340 263 256 865 683 870 1 197 180 / 0,09 0,00 0,82 0,01 

 

The most appropriate distribution appears to be the Gaussian Kernel. This makes sense since it directly reflects the empirical 

distribution. However, the issue with modeling using the Gaussian Kernel lies in the tail of the distribution, which tends to be thin, 

making it less effective for representing significant claim amounts. Indeed, it is due to limited historical depth of observations, 

which may not include large claims with return periods of 50 or 100 years. It leads the Gaussian Kernel to underestimate the 

probability of extreme events. Gaussian kernels are also characterized by normal distribution tails, which may not realistically 

 
1 The absolute relative difference is calculated between the fitted and the observed distribution  
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represent the heavy-tailed nature of reinsurance risks. Spliced distributions, on the other hand, appear to be strong candidates, as 

they exhibit low KS and CVM distances. Moreover, the p-values are greater than 5%, so we do not reject the null hypothesis, 

unlike the Gamma distribution calibrated through the method of moments. The following figure displays a spider web chart 

representing the rank of the fitted distributions for each calculated metric. The chart on the left illustrates the rankings of the 

metrics for the top four distributions, while the one on the right represents the rankings across all fitted distributions. 

 

Figure 44: Spider web chart – XL treaty number 1 

The table below displays the calculation of the index, and the distribution ranks. While the Gaussian Kernel is the most appropriate 

distribution due to its nature, the ME-GPD distribution is of greater interest and appears to be a more suitable choice. 

Table 26: Rank of the best 4 distributions - XL treaty number 1  

Distributions Mean Quantile 

(90) 

Quantile 

(99) 

Log 

likelihood 

KS 

distance 

CVM 

distance 

𝑮𝒍𝒐𝒃𝒂𝒍 𝒓𝒂𝒏𝒌 𝒊𝒏𝒅𝒆𝒙 Rank 

GAUSSIAN_KERNEL 5 1 1 / 1 1 5,80 1 

ME_GPD 2 2 4 5 3 3 11,16 2 

ME_PARETO 7 3 3 4 2 2 15,16 3 

GAMMA_MME 6 6 2 / 4 4 21,60 4 

 

The parameters of these four distributions and the ranks of all distributions are provided in the appendix. 

5.1.2.4.2 Qualitative approach 

To assess the fit of ranked distributions for severity modeling, it is possible to plot CDF, density and QQ plots. These plots can be 

used to visually evaluate the goodness of fit and determine whether the ranked distributions appear consistent to model claims 

amounts.  

The CDF represents the probability that a random variable 𝑋 takes a value less than 𝑥, expressed as 𝐹(𝑥) =  ℙ(𝑋 ≤ 𝑥). The 

empirical CDF of the observed data is thus computed and plotted alongside the theoretical CDFs of each distribution. Additionally, 

the retention and the limit of the treaty are indicated on the graph. If the CDF of a distribution closely matches the empirical one, 

the distribution is suitable for modeling severity. 
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Figure 45: CDF of fitted distributions – XL treaty number 1 

The CDF of XL treaty number 1 suggests that the ranking of distributions appears appropriate, as the CDFs of the Mixed Erlang 

and Pareto/GPD distributions seem quite close to the observed distribution, while the Gamma distribution appears to deviate more 

significantly. Additionally, a slight inflection point can be noted around 840 000 € for the Mixed Erlang – Pareto/GPD 

distributions. This inflection corresponds to the threshold above which severity is modeled using a GPD or a Pareto distribution. 

Let us focus on the part of the curve between the retention and the treaty limit (Figure 46).  

 

Figure 46: CDF of fitted distributions (zoom) – XL treaty number 1 
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On this graph, the previously mentioned inflection point is more pronounced. Additionally, the Gamma distribution appears to 

have a thinner tail compared to the other distributions. The Gamma distribution would thus result in a lower expected recovery 

amount. In contrast, the ME Pareto and ME GPD distributions are quite similar and thus expected to lead to comparable recovery 

amounts. Furthermore, it is noteworthy that the likelihood of a claim exceeding the retention threshold remains relatively low, 

estimated at around 5% to 10%.  

Concerning the QQ plot, the figure below presents the QQ plot of the four previously selected distributions. It seems to confirm 

that the distributions were appropriately selected and calibrated, as the quantiles align well with the bisector. Consistent with the 

observations from the CDF, the Gamma distribution exhibits lower high quantiles compared to the observed distribution and the 

other fitted distributions. This was expected, given that the Gamma distribution has a thinner tail. Consequently, this characteristic 

would likely result in lower recovery amounts for the reinsurer. 

 

Figure 47: QQ plot of fitted distributions – XL treaty number 1 

To sum up, the following figure details the underlying claims modeling process, defined as “P7” in Figure 31. 
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Figure 48: Experience modeling process – XL per risk treaties
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5.1.3 Recoveries modeling 

Once the parameters of the frequency and severity distributions have been established and the appropriate distributions selected 

for each loss-generator, the next step in the Monte Carlo estimation process is to simulate a distribution of amounts ceded to 

reinsurance, also known as recoveries. 

To achieve this, 50,000 years of loss experience for each generator will be simulated. In this project, the number of simulations 

has been set to 𝑁𝑠𝑖𝑚𝑢𝑙 = 50 000 following AGCRe usual process within the internal model. However, the number of simulations 

can be adjusted within the reinsurance pricing tool. Let us consider a loss experience year for a fixed generator. Let 𝑖 be a simulated 

year, 𝑁𝑖 be the number of claims simulated and (𝑋𝑘
𝑖 )
1≤𝑘≤𝑁𝑖

 the individual amount of each claim 𝑘 for the loss experience year 𝑖 

considered.  

When pricing an XL treaty, one is also reminded that the treaty parameters include: 

• A limit 𝐿 and retention 𝑅 

• The Annual Aggregate Deductible noted 𝐴𝐴𝐷, and the Annual Aggregate Limit noted 𝐴𝐴𝐿 

• The total number of reinstatements noted 𝑛𝑏𝑟𝑒𝑐 . If the treaty reinstatements are 2@50%, 3@100%, then 𝑛𝑏𝑟𝑒𝑐 = 5. In 

the case where the number of reinstatements is fixed, the AAL is equal to: (1 + 𝑛𝑏𝑟𝑒𝑐) ∗ 𝐿. 

• The presence of a indexation clause, the indexation clause threshold noted 𝑡𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛, the indexation rate to be used 

𝑟𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 and the discount rate to be used 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 .  

5.1.3.1 Application of the indexation clause 

Before applying the retention limit to individual claims, the indexation clause, which can significantly impact the amounts related 

to the retention and the treaty limit, must be considered since it is a frequent clause among AXA underwritten treaties. In this 

project, the Annual Aggregate Deductible and Annual Aggregate Limit are not considered in the application of the indexation 

clause, since few AGCRe treaties include such an indexation clause. For future considerations about AAD and AAL indexation 

clauses, one could look at (Yeung, 2011).  

Suppose that the XL treaty includes an indexation clause. Let us consider an index vector 𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 ∈ ℝ
30 equal to 

((1 + 𝑟𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 ∗ 1(1+𝑟𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛)𝑗>1+𝑡𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛)
−𝑗

)
1≤𝑗≤30

. This vector  𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 is then used to index individual payments 

over time through their payment pattern 𝑃𝑃, to ultimately deduce the indexed vector 𝑃𝑃𝑖𝑛𝑑𝑒𝑥𝑒𝑑 ∈ ℝ
30 : 

𝑃𝑃𝑖𝑛𝑑𝑒𝑥𝑒𝑑 = (𝑃𝑃𝑗 ∗ (𝜐𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛)𝑗)1≤𝑗≤30 

Once this indexed amount obtained, the indexing ratio 𝑟𝑎𝑡𝑒𝑘 
𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 ∈ ℝ30 at each time step is calculated: 

𝑟𝑎𝑡𝑒𝑘 
𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛 = (

∑ 𝑃𝑃
𝑗
𝑚=1 𝑚

∑ (𝑃𝑃𝑖𝑛𝑑𝑒𝑥𝑒𝑑)𝑚
𝑗
𝑚=1

)

1≤𝑗≤30

 

This ratio corresponds to the ratio between the non-indexed and indexed cumulative payment pattern. It is then used to compute 

a retention amount vector and an indexed limit vector. 𝑅𝑘
𝑖𝑛𝑑𝑒𝑥𝑒𝑑 ∈ ℝ30 and 𝐿𝑘

𝑖𝑛𝑑𝑒𝑥𝑒𝑑 ∈ ℝ30 for each claim, by multiplying the 

retention 𝑅 and the limit 𝐿 with the vector 𝑟𝑎𝑡𝑒𝑘 
𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛. If the treaty does not include an indexation clause, the vector 

𝑟𝑎𝑡𝑒𝑘 
𝑖𝑛𝑑𝑒𝑥𝑎𝑡𝑖𝑜𝑛is taken to be equal to (1)1≤𝑗≤30 ∈ ℝ

30: retention and limit remain unchanged. The indexation clause, therefore, is 

primarily dependent on the payment pattern. By calibrating the payment pattern, one can apply the effects of the indexation clause 

and incorporate it into the calculation of recoveries. 

Since the considered treaty does not have an indexation clause, let us consider an XL treaty with the following parameters: 
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Table 27: Indexation clause parameters 

Quantity Value 

RETENTION 300 000 

LIMIT 3 700 000 

INDEXATION_CLAUSE 1 

INDEXATION_CLAUSE_THRESHOLD 20 % 

INDEXATION_CLAUSE_INFLATION_RATE 3,63 % 

 

The payment pattern of this XL treaty is shown in Figure 24.  

To demonstrate the effect of the stabilization clause, the evolution of the retention and limit over time is displayed below. 

 

Figure 49: Evolution of retention under a stabilization clause 

 

Figure 50: Evolution of limit under a stabilization clause 
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Before 5 years, the retention and limit amounts remain unchanged. This is due to the indexation clause, which sets a threshold of 

20%. With an index evolution of approximately 3.6% per year, the index threshold will only exceed 0.2 after five years. Since the 

treaty covers a long-tail LoB, there are still payments occurring after 5 years, which triggers the application of the indexation 

clause. From year 5 onward, the retention and limit continue to evolve as claims are still being paid according to the payment 

pattern. A stabilization of the limit and retention occurs around year 13 since the claims are fully paid by this point.  

This clause is particularly useful for the reinsurer, especially for long-tail business lines where claims are paid out over several 

years, where economic conditions may change. 

5.1.3.2 Application of treaty T&C 

Once the values of 𝑅𝑘,𝑖𝑛𝑑𝑒𝑥𝑒𝑑  and 𝐿𝑘,𝑖𝑛𝑑𝑒𝑥𝑒𝑑  obtained, the XL treaty conditions can be applied. In order to get the recovery amount 

for the loss experience year 𝑖 and claim 𝑘, each individual amount 𝑋𝑘
𝑖  is projected over time using the payment pattern 𝑃𝑃 =

(𝑃𝑃𝑗)1 ≤ 𝑗 ≤ 30 calibrated in section 4.3 to get a vector of cumulated individual payments made by the cedent: 

𝑋𝑖,𝑘,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡 = (∑𝑃𝑃𝑡 ∗ 𝑋𝑘

𝑖

𝑗

𝑡=1

)

 1 ≤ 𝑗 ≤ 30

 

The use of the payment pattern will enable to grasp actualization considerations in the calculation of recoveries. For each 

component of the vector 𝑋𝑖,𝑘,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 , the conditions of the XL treaty are applicated to compute the vector of individual 

recoveries below for 𝑘 ∈ {1, … , 𝑁𝑖}:  

𝑋𝑖,𝑘,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (min( ((𝑋𝑖,𝑘,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑐𝑒𝑑𝑒𝑛𝑡 )
𝑗
− (𝑅𝑘,𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑)𝑗)

+
,  (𝐿𝑘,𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑)𝑗))

1 ≤ 𝑗 ≤ 30

 

The resulting vector represents the cumulative amount ceded to the reinsurer over the next 30 years for a single claim. The figure 

below illustrates the evolution of the amounts ceded to reinsurance for the XL treaty examined in this section, with a simulated 

ultimate claim amount of 1 489 563 €, projected using the payment pattern. The reinsurer starts receiving recoveries from 

development year 2, as the amount in the first year is too low to exceed the retention. A sharp increase in recoveries follows, which 

aligns with the payment pattern and the characteristics of the short-tail line of business covered by the reinsurance treaty. The final 

amount of recoveries is known starting from year 11, which is consistent with the payment pattern's expected progression. 

 

Figure 51: Cumulated individual claim amount/recovery – XL treaty number 1 
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After applying the retention and limit, only the AAD and the AAL remain to be considered. We make the simplifying assumption 

that for a given year 𝑗 ∈ {1, … ,30}, all individual amounts are declared in the middle of the year. This assumption allows us not 

to consider the claims individually. Additionally, since AGCRe reinsurance treaties do not include temporal clauses regarding the 

reinstatement premiums, this assumption does not restrict the calculation of the reinstatement premium. 

For each year 𝑖 simulated, the vector of cumulative annual recoveries is: 

𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐴𝐴𝐷 𝑜𝑟 𝐴𝐴𝐿)  

= (∑(𝑋𝑖,𝑘,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 )

𝑗

𝑁𝑖

𝑘=1

)

1 ≤ 𝑗 ≤ 30

 

If multiple generators have been calibrated, the previous vector is derived by aggregating all claims from the different generators 

with the same simulated year and frequency/severity rankings. Once this vector has been calculated for each of the simulations, 

AAL and AAD are applied to it: 

𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  = (min(((𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐴𝐴𝐷 𝑜𝑟 𝐴𝐴𝐿)  
)
𝑗
− 𝐴𝐴𝐷)

+
, 𝐴𝐴𝐿))

1≤𝑗≤30

 

Afterwards, the final vector of cumulative recoveries per simulation 𝑖 is used to calculate the cash flow vectors of recoveries for 

each simulation year: 

𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  = ((𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  )
𝑗
− (𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  )
𝑗−1
1𝑗≥2)

1≤𝑗≤30
 

These future cash flows are then discounted by multiplying the elements of the vector 𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑) 

 by those of the 

vector 𝑟 = (
1

(1+𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)
𝑗−0.5)

1≤𝑗≤30
. We have assumed, in the development of this reinsurance pricing tool, a constant discount 

rate set at 2,5 %. This assumption, along with the discrete time modeling approach, may impact the discounted values since all 

claims are assumed to be reported at the same time of the year. Unfortunately, the granularity of the payment pattern calculation 

does not allow us to account for these variations within our current estimation of recoveries. Moreover, the calibration of specific 

discount curves related to different LoBs could represent an area for improvement. By incorporating more granular discount rates, 

one would be able to refine the recovery estimates and better reflect the time value of money, especially for long-tail treaties where 

payments are spread over extended periods. 

Finally, one computes, for each simulation 𝑖, a discounted vector comprising all the annual discounted cash flows of recoveries 

noted 𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑) 

 and the total present value of recoveries noted 𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

 described by the following 

formulas : 

𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑) 

= (
(𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  )

𝑗

(1 + 𝑟𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)
𝑗−0.5

)

1≤𝑗≤30

∈ ℝ30 

𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

=∑(𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑) 

)
𝑗

30

𝑗=1

 ∈ ℝ 

Over all simulated years 𝑖 = 1,… , 𝑁𝑠𝑖𝑚𝑢𝑙, one has simulated a vector of recoveries  (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

 

corresponding to the amount ceded to the reinsurer under the reinsurance contract.  

The figure below details the distribution of recoveries for each of the four distributions. As expected, the ME Pareto and ME GPD 

distributions have heavier tails, while the Gamma distribution exhibits the thinnest tail. However, most of the recovery amounts 

are zero, which is consistent with the low probability of exceeding the retention.  
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Figure 52: Distribution of recoveries – XL treaty number 1 

To sum up, the following figure details the underlying claims modeling process, defined as “P9” in Figure 31. 
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Figure 53: Treaty T&C application process - XL per risk treaties 
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5.2 Modeling losses per exposure (XL per Risk and SP) 

The frequency-severity approach developed earlier offers numerous advantages, particularly in its flexibility regarding the choice 

of distributions and estimation methods. However, this method has certain limitations, as it relies heavily on the availability of 

sufficient underlying claims data and it does not consider portfolio exposure evolution, i.e. the latest portfolio configuration.   

To address these issues, the exposure-based method has been implemented as an alternative.  This approach circumvents the need 

for extensive claims history and can also be applied in cases where frequency-severity struggles, such as high-excess layers with 

no historical claims large enough to generate recoveries. Furthermore, it takes into account the latest covered insurance portfolio 

structure and composition and thus gives rise to an assessment that better reflects the actual covered exposure. 

In this actuarial project, the exposure-based methodology has been developed mainly for XL per risk and SP property treaties 

(which are not modeled within the internal model), owing to the characteristics of this LoB. For property treaties, the exposure 

methodology relies on exposure curves from which loss degree distributions can be derived. One can thus model loss amounts 

based on a destruction rate and a sum insured. This approach is based on the main hypothesis that policies within the same risk 

group have a similar destruction rate distribution. 

Future improvements could involve extending the methodology to other LoBs, such as liability1 and marine, where exposure 

pricing could also be relevant. However, the exposure methodology presents some drawbacks. Indeed, the exposure methodology 

requires knowledge of the loss ratio per exposure range which might be difficult to obtain, especially for bands with few insurance 

policies. Additionally, the limited number of risk profiles available does not yet allow for generalizing this method to all treaties. 

To maximize the number of treaties that can be accurately priced, it will be necessary to gather more data from entities in the 

future. In addition, exposure curve calibration requires a large amount of data, which was not available in this project. It is therefore 

necessary to rely on benchmark exposure curves, which may reduce the accuracy of the modeling process. Consequently, for XL 

per risk, the exposure methodology is not the primary focus, and the frequency-severity approach remains preferred due to its 

capacity to assess more treaties. For SP treaties, the exposure curve is used thanks to its capacity to integrate destruction rate and 

sum insured considerations. The next section will detail the methodology developed in the pricing tool to model recoveries. 

5.2.1 Exposure pricing theory 

Let us consider an XL per risk treaty 𝐿 xs 𝑅. First, for a risk 𝑝, a destruction rate 𝑥𝑝 ∈ [0,1] is defined as 𝑥𝑝 = 
𝑋𝑝

𝑄𝑝
 where: 

• 𝑋𝑝 is a random variable corresponding to the gross loss of an individual claim related to risk 𝑝  

• 𝑄𝑝 represents the sum insured of the risk 𝑝 

For property treaties, the destruction rate CDF 𝐹 is supposed not to depend on 𝑖 for risks belonging to the same risk group. Under 

this assumption, the cumulative distribution function of the random variable 𝑥𝑝 is noted 𝐹 for all 𝑖. We further define the 

normalized retention 𝑟𝑝 as 𝑟𝑝 =
𝑅

𝑄𝑝
, the normalized limit as 𝑙𝑝 as 𝑙𝑝 =

𝐿

𝑄𝑝
 and the limited expected value function as 𝐿(𝑡) =

 𝔼(min(𝑡, 𝑥𝑝)).  

By decomposing the random gross loss 𝑋𝑝 into the part retained by the cedent and the one ceded to the reinsurer as: 𝑋𝑝  =

𝑋𝑝
𝑐𝑒𝑑𝑒𝑛𝑡  + 𝑋𝑝

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 , we can express the expected value of both the retained and the reinsured amounts as follows: 

𝔼(𝑋𝑝
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = (𝐿(𝑟𝑝 + 𝑙𝑝) − 𝐿(𝑟𝑝)) ∗ 𝑄𝑝 

 
1 Concerning the liability LoB, a first approach has been implemented as an exploration 
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𝔼(𝑋𝑝
𝑐𝑒𝑑𝑒𝑛𝑡) = 𝐿(1) ∗ 𝑄𝑝 − 𝔼(𝑋𝑝

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 

The exposure curve function can then be defined as the percentage of losses retained by the cedent which is given by the function 

𝐺(𝑡) =  
𝐿(𝑡)

𝐿(1)
 , also known as exposure curve function. It is also expressed as:  

𝐺(𝑡) =
𝐿(𝑡)

𝐿(1)
=
∫ (1 − 𝐹(𝑧))𝑑𝑧
𝑡

0

∫ (1 − 𝐹(𝑧))𝑑𝑧
1

0

=
∫ (1 − 𝐹(𝑧))𝑑𝑧
𝑡

0

𝔼(𝑥𝑖)
 

The exposure curves are concave and increasing functions on the interval [0; 1] with 𝐺(0)  =  0 and 𝐺(1)  =  1. Furthermore, the 

expected destruction rate is 𝔼(𝑥𝑝) =  
1

𝐺′(0)
  and the probability of total loss is defined as 𝑝 = ℙ(𝑥𝑖 = 1) =

𝐺′(1)

𝐺′(0)
. One can also 

deduce the destruction rate CDF 𝐹 from the exposure curve 𝐺: 

𝐹(𝑡) = 1 −
𝐺′(𝑡)

𝐺′(0)
10≤𝑡≤1 

The following section focuses on presenting the exposure curves that can be used and the ones we have selected.  

5.2.2 Exposure pricing curves 

5.2.2.1 Empirical exposure curves 

For an XL per risk treaty within the property LoB the assumption that risks within the same risk group share the same destruction 

rate distribution allows for the calibration of empirical distribution curves. These are based on the historical destruction rates 

(𝑥𝑝)1≤𝑝≤𝑛 of historical applicable claims.  

To calibrate an empirical exposure curve, the first step is to compute the empirical CDF 𝐹̂𝑥(𝑡) =  
1

𝑛
∑ 1𝑥𝑝≤𝑡
𝑛
𝑝=1  and the empirical 

mean 𝔼̂(𝑥) =  
1

𝑛
∑ 𝑥𝑝
𝑛
𝑝=1  of the destruction rate distribution. It is then necessary to make the empirical distribution function 

continuous to enable its integration for calculating the exposure curve function. Several methods are available: spline smoothing, 

local smoothing, or piecewise linear interpolation. Afterwards, for a scalar 𝑡 ∈ [0; 1], one can construct an empirical estimate of 

the exposure curve with the function 𝐺̂:  

𝐺̂(𝑡) =  
∫ 1 − 𝐹̂𝑥(𝑧)𝑑𝑧
𝑡

0

𝔼̂(𝑥)
 

The function 𝐺̂ corresponds to an empirical estimate of the exposure curve.  

Unfortunately, this method was not implemented during this study due to the unavailability of destruction rate data. Establishing 

contact with the AXA entities and determining whether such data is accessible at their level could enable the calibration of 

exposure curves specific to each treaty. This approach could act as a basis for further improvements. 

5.2.2.2 MBBEFD Distribution Approach 

One can also set an exposure curve for a given XL per risk treaty by assuming a probability distribution for destruction rates. 

(Bernegger, 1997) proposed to implement MBBEFD (Maxwell-Boltzman-Bose-Einstein-Femi- Dirac) for modeling destruction 

rates on the interval [0,1]. The MBBEFD distribution is a continuous distribution defined by two parameters 𝑎 and 𝑏 with the 

following CDF: 
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𝐹𝑀𝐵𝐵𝐸𝐹𝐷(𝑎,𝑏)(𝑡) =  {

1, 𝑡 = 1
1 − (𝑎 + 1)𝑏𝑡

𝑎 + 𝑏𝑡
, 0 ≤ 𝑡 ≤ 1

 

The exposure curve related to this distribution is: 

𝐺𝑀𝐵𝐵𝐸𝐹𝐷(𝑎,𝑏)(𝑡) =  
ln(𝑎 + 𝑏𝑡) − ln(𝑎 + 1)

ln(𝑎 + 𝑏) − ln(𝑎 + 1)
 

This distribution can be parametrized with a parameter 𝑔 =  
𝑎+𝑏

(𝑎+1)𝑏
 instead of 𝑎 (and thus 𝑎 =  

(𝑔−1)𝑏

1−𝑔𝑏
). The parameter 𝑔 

corresponds to the inverse of the probability 𝑝 = ℙ(𝑥 = 1). For the probability 𝑝 to be within the range [0,1] and 𝐺𝑀𝐵𝐵𝐸𝐹𝐷(𝑔,𝑏) 

to be well defined, we restrain the parameters to 𝑏 ≥ 0 and 𝑔 ≥ 1. The corresponding exposure defined by (Bernegger, 1997) is:  

𝐺𝑀𝐵𝐵𝐸𝐹𝐷(𝑔,𝑏)(𝑡) =

{
 
 
 
 

 
 
 
 

                            𝑡, 𝑔 = 1 ∨ 𝑏 = 0

ln(1 + (𝑔 − 1)𝑡)

ln(𝑔)
, 𝑏 = 1 ∧ 𝑔 > 1 

                    
1 − 𝑏𝑡

1 − 𝑏
, 𝑏𝑔 = 1 ∧ 𝑔 > 1

             
ln(
(𝑔 − 1)𝑏 + (1 − 𝑔𝑏)𝑏𝑡

1 − 𝑏
)

ln(𝑔𝑏)
, 𝑏 > 0 ∧ 𝑏 ≠ 1 ∧ 𝑏𝑔 ≠ 1 ∧ 𝑔 > 1

 

The notation 𝑔 = 1 ∨ 𝑏 = 0 signifies “𝑔 = 1 or 𝑏 = 0”, while the notation 𝑏 = 1 ∧ 𝑔 > 1 means “𝑏 = 1 and 𝑔 > 1”. 

Based on the MBBEFD exposure curve, one can compute the corresponding CDF of the destruction rate 𝐹𝑀𝐵𝐵𝐹𝐸𝐷(𝑔,𝑏): 

𝐹𝑀𝐵𝐵𝐸𝐹𝐷(𝑔,𝑏)(𝑡) =

{
 
 
 

 
 
 

1, 𝑡 = 1
                                    0, 𝑡 < 1 ∧ (𝑔 = 1 ∨ 𝑏 = 0) 

1 −
1

1 + (𝑔 − 1)𝑡
, 𝑡 < 1 ∧ 𝑏 = 1 ∧ 𝑔 > 1

                       1 − 𝑏𝑡, 𝑡 < 1 ∧ 𝑏𝑔 = 1 ∧ 𝑔 > 1

             1 −
1 − 𝑏

(𝑔 − 1)𝑏1−𝑡 + (1 − 𝑔𝑏)
, 𝑡 < 1 ∧ 𝑏 > 0 ∧ 𝑏 ≠ 1 ∧ 𝑏𝑔 ≠ 1 ∧ 𝑔 > 1 

 

If the destruction rates are assumed to follow an MBBEFD distribution, one needs to estimate the parameters 𝑔 and 𝑏 of the 

distribution. The methods of moments and the maximum likelihood estimation can be used to estimate the 𝑔 and 𝑏 parameters.  

For the method of moments, (Bernegger, 1997) showed that for every pair 𝑝 and 𝔼(𝑥) satisfying the condition 0 ≤  𝑝 ≤  𝔼(𝑥)  ≤

 1, there exists only one distribution belonging to the MBBEFD class. The parameter 𝑔 is estimated by 𝑔̂ =
1

ℙ(𝑥=1)
 and the 

parameter 𝑏̂ is the solution of the equation 𝔼̂(𝑥) =  
ln(𝑔𝑏)(1−𝑏)

ln(𝑏)(1−𝑔𝑏)
. One can also estimate the parameters 𝑔 and 𝑝 with the MLE 

method, but it requires the use of numerical methods such as the Newton-Raphson method. This method iteratively refines the 

estimates of the parameters by using the first and second derivatives of the likelihood function until convergence is achieved.  

Like the empirical destruction curves, this method could not be applied in the context of this study due to the lack of data on 

destruction rates. Still, the tool allows the user to select its own MBBEFD parameters and apply this methodology. 

5.2.2.3 Swiss Re exposure curves 

Instead of calibrating exposure curves for each reinsurance treaty, one can use benchmark exposure curves such as the Swiss Re 

exposure curves. The original Swiss Re curves, also called Gasser curves, were developed by Peter Gasser based on the data of 

"Fire statistics of the Swiss Association of Cantonal Fire Insurance Institutions" for the years 1959-1967. These curves were 
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parameterized with MBBEFD distributions. A new sub-class of the one-parameter MBBEFD exposure curves was then defined 

as:  

𝐺𝑐 = 𝐺𝑀𝐵𝐵𝐸𝐹𝐷(𝑔(𝑐),𝑏(𝑐)) 

With 𝑏(𝑐) = exp(3.1 − 0.15(1 + 𝑐)𝑐) and 𝑔(𝑐) = exp((0.78 + 0.12𝑐)𝑐). 

Each Swiss Re exposure curve has a defined parameter 𝑐. The table below describes the Swiss Re curves and recommendation for 

their use within the LoB property. 

Table 28: Swiss Re exposure curves 

Exposure Curve 𝒄 𝒃 𝒈 Scope of application 

Swiss 1 1.5 12.648 4.221 Personal lines 

Swiss 2 2.0 9.025 7.691 Commercial lines (small scale) 

Swiss 3 3.0 3.669 30.569 Commercial lines (medium scale) 

Swiss 4 4.0 1.105 154.470 Industrial and large commercial 

 

Due to the lack of data on destruction rates, these exposure curves will be used.  

5.2.2.4 AXA Group exposure curves 

AXA has also developed and calibrated distinct exposure curves for Industrial, Commercial, and Residential sub-LoBs for some 

entities within the property LoB. These exposure curves are based on hyperbolic MBBEFD distributions. This distribution is a 

limit case of the two-parameter MBBEFD for which 𝑏 → 1 and 𝑔 =  
1

𝑝
. The advantage of this one-parameter family is the easiness 

to fit due to a one-parameter assessment. Consider 1 > 𝑚 > 0. The properties of a random variable 𝑥 which follows a hyperbolic 

MBBEFD distribution of parameter 𝑚 are listed below: 

• Density function: For 𝑡 ≥ 0, 𝑓(𝑡) =
1

𝑚(1+
𝑡

𝑚
)
10≤𝑡<1 +

𝑚

1+𝑚
1𝑡=1 

• Mean: 𝔼(𝑥) = m ∗ ln(1 +
1

𝑚
) 

• Cumulative Distribution Function (CDF): 𝐹(𝑡) = {
(1 −

1

1+
𝑡

𝑚

)10<𝑡<1 + 1𝑡≥1, 𝑡 ≥ 0 

0, 𝑡 < 0 

 

The parameter 𝑚 of a hyperbolic MBBEFD can be linked to the parameter 𝑔 of an MBBEFD thanks to the probability ℙ(𝑥 = 1), 

leading to 𝑚 =
1

𝑔−1
.   

The AXA exposure curves are also based on the hypothesis that the destruction rate of risks within the same group follows a hyper-

MBBEFD distribution of parameter 𝑚, where 𝑚 is the median of the destruction rate within the group. Since the median of the 

destruction rate per group is not always available, a regression analysis which allows to determine the median of the destruction 

rate 𝑚 knowing the line of business and the average sum insured of the considered portfolio layer has been developed internally. 

A linear relationship between the mean of the Sums Inured 𝑄𝑚𝑒𝑎𝑛  and the estimated parameter 𝑚̂ per sub-Lob is then available: 

log(𝑚̂) = 𝐴 ∗ log(𝑄𝑚𝑒𝑎𝑛) + 𝐷 

Where 𝐴 and 𝐷 are regression parameters depending on the considered entity and LoB. In total, the AXA curves cover 5 entities 

across 3 sub-LoBs within the property LoB. 

As opposed to the other curves, the AXA curves depend on the range of the risk profile thanks to the relationship between the 

parameter of the exposure curve and the mean of the Sum Insured within the risk profile. It thus takes into account the evolution 
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of the destruction rate as a function of the sum insured. Intuitively, the higher the sum insured, the lower the destruction rate is 

likely to be. Indeed, a small property is more likely to be completely destroyed in the event of a claim than a castle. With AXA 

exposure curves, an increase of 𝑄𝑚𝑒𝑎𝑛 leads to an increase of 𝑚, which lowers the average destruction rate, thus illustrating this 

effect.  

After presenting the different exposure curves, we will now detail how these curves are used in the recoveries modeling for an XL 

treaty, using the risk profile database defined in 3.5.  

5.2.3 Pure loss modeling (XL per Risk) 

If the risk profile of an entity is known and an exposure curve 𝐺𝑐𝑢𝑟𝑣𝑒  has been selected to model recoveries, it becomes possible 

to quickly estimate the reinsurer’s average loss for an XL per risk treaty 𝐿 xs 𝑅. 

After receiving the risk profile and choosing an exposure function 𝐺𝑐𝑢𝑟𝑣𝑒 , the assessment of the reinsurer’s average losses can be 

conducted through the following steps: 

1. Setting the mean individual exposure per range 𝑄ℎ 

2. Setting the mean normalized retention 𝑟ℎ and limit 𝑙ℎ for each band ℎ as: 𝑟ℎ = min(
𝑅

𝑄ℎ
, 1) and 𝑙ℎ = min(

𝐿+𝑅

𝑄ℎ
, 1) 

3. The mean gross loss per range is then estimated with the gross premiums 𝐺𝑃ℎ per band provided. The total loss per range 

shall be calculated as: 𝔼̂(𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠ℎ) = 𝐿𝑅ℎ ∗ 𝐺𝑃ℎ where 𝐿𝑅ℎ is the budgeted loss ratio for ℎ-th band. 

4. An appropriate exposure curve for each band is chosen. 

5. For each range, the value of exposure curve function 𝐺𝑐𝑢𝑟𝑣𝑒(𝑟ℎ  ) and 𝐺𝑐𝑢𝑟𝑣𝑒(𝑙ℎ  ) are calculated. 

6. The reinsurer loss for each band is then estimated with the formula: 

𝔼̂(𝑆ℎ
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = (𝐺𝑐𝑢𝑟𝑣𝑒(𝑙ℎ  ) − 𝐺𝑐𝑢𝑟𝑣𝑒(𝑟ℎ  )) ∗ 𝔼̂(𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠ℎ) 

7. The estimated mean total loss of the treaty for the reinsurer 𝔼̂(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) can be expressed as: 

𝔼̂(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)𝑃𝑢𝑟𝑒 𝐿𝑜𝑠𝑠 = ∑𝔼̂(𝑆ℎ
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

𝐻

ℎ=1

 

For all ranges ℎ ∈ {1, … , 𝐻} 

In this actuarial work, this estimation will be provided for indicative purposes only. It represents a simplified assessment, as many 

treaty parameters are not accounted for in this model. Specifically, no payment pattern can be applied, and only the pure premium 

of the treaty is computed. Furthermore, the pure premium is particularly dependent on the budgeted loss ratios per band, which 

are provided in the risk profile and are not necessarily correctly estimated. Moreover, a precise estimate of the loss ratio per band 

is not always available, and loss ratios can be approximated by a loss ratio on a wider scale. The effects of reinstatements, AAD, 

AAL or indexation clauses are also not measured. Moreover, this methodology is highly dependent on the risk profile, and the 

choice of the exposure curve. The latter can be subjective and largely influenced by the user’s judgment if Swiss Re curves are 

chosen. Additionally, at this stage, the same exposure curve is applied across all ranges of the risk profile. A more refined 

estimation could involve selecting different exposure curves for various ranges, which is the case for the AXA exposure curves. 

However, this was not implemented within the tool when using MBBEFD exposure curves to simplify automation, though it could 

serve as a potential area for future improvements. 

To illustrate the methodology, let us consider the following XL treaty, which covers a single cedent within the Property – 

Commercial LoB: 

• Limit: 2 000 000 €.  

• Retention: 3 000 000 €.  

• Reinstatement: 2 reinstatements available, each at 100% of the original premium. 

• Stabilization Clause: None.  
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• Loss Basis: Loss Occurring (losses are covered based on when they occur, regardless of the policy's inception date). 

• AAD/AAL: No Annual Aggregate Deductible (AAD) and an Annual Aggregate Limit (AAL) of 6 000 000 €. 

Given the LoB (Commercial Property), the Swiss Re 4 exposure curve has been selected for this example. A more realistic 

approach would be to consider different Swiss Re curves for the first exposure bands. However, since only the higher exposure 

bands will impact the recovery amount, the choice of the exposure curve for the lower bands is not particularly important when 

estimating the pure loss of an XL treaty. This would not be the case when modeling recovery distribution or SP treaties since the 

entire risk profile is relevant in this case. The risk profile considered is displayed in the following table. However, the values in 

the dataset have been adjusted for confidentiality purposes. The actual results derived from the real risk profile will be shared as 

indicative figures.  

Table 29: Risk profile example – XL exposure pricing 

Range Min Range Max Number 

of risks 

Sum Insured Gross Written 

Premium 

Budgeted 

LR 

Mean Sum 

Insured 

0 € 500 000 € 358003 74 314 971 558 € 54 847 761 € 84% 207 582 € 

500 001 € 1 000 000 € 49059 33 871 144 329 € 19 556 137 € 68% 690 417 € 

1 000 001 € 2 000 000 € 27926 39 416 005 433 € 17 896 638 € 70% 1 411 445 € 

2 000 001 € 3 000 000 € 9644 23 536 417 536 € 9 970 029 € 69% 2 440 524 € 

3 000 001 € 4 000 000 € 4386 15 131 484 262 € 6 304 789 € 78% 3 449 951 € 

4 000 001 € 5 000 000 € 2258 10 085 109 923 € 4 244 733 € 80% 4 466 391 € 

5 000 001 € 6 000 000 € 1150 6 316 189 232 € 2 688 083 € 69% 5 492 338 € 

6 000 001 € 8 000 000 € 1174 8 135 715 868 € 3 401 340 € 70% 6 929 911 € 

8 000 001 € 10 000 000 € 547 4 927 973 682 € 1 957 181 € 67% 9 009 093 € 

10 000 001 € 15 000 000 € 533 6 370 926 686 € 2 499 792 € 70% 11 952 958 € 

15 000 001 € 20 000 000 € 116 2 010 733 793 € 670 134 € 75% 17 333 912 € 

20 000 001 € 30 000 000 € 83 2 029 779 486 € 713 290 € 76% 24 455 175 € 

30 000 001 € 40 000 000 € 28 939 074 553 € 282 152 € 73% 33 538 377 € 

40 000 001 € 50 000 000 € 9 399 697 027 € 95 993 € 71% 44 410 781 € 

50 000 001 € 60 000 000 € 8 432 269 500 € 159 145 € 65% 54 033 688 € 

60 000 001 € 75 000 000 € 2 141 500 000 € 53 614 € 67% 70 750 000 € 

 

The table below presents the estimated quantities calculated during the pure loss modeling part and the estimation of the reinsurer’s 

average losses. 
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Table 30: Pure premium calculation 

Range Min Range Max 𝒓𝒉 𝒍𝒉 (𝑮𝒄𝒖𝒓𝒗𝒆(𝒍𝒉 ) − 𝑮𝒄𝒖𝒓𝒗𝒆(𝒓𝒉 )) 𝔼̂(𝑻𝒐𝒕𝒂𝒍 𝑳𝒐𝒔𝒔𝒉) 𝔼̂(𝑆ℎ
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 

0 € 500 000 € 1 1 0,00% 46 072 119 € 0 € 

500 001 € 1 000 000 € 1 1 0,00% 13 298 173 € 0 € 

1 000 001 € 2 000 000 € 1 1 0,00% 12 527 647 € 0 € 

2 000 001 € 3 000 000 € 1 1 0,00% 6 879 320 € 0 € 

3 000 001 € 4 000 000 € 0,87 1 2,82% 4 917 735 € 138 676 € 

4 000 001 € 5 000 000 € 0,67 1 8,06% 3 395 786 € 273 631 € 

5 000 001 € 6 000 000 € 0,55 0,91 10,06% 1 854 777 € 186 679 € 

6 000 001 € 8 000 000 € 0,43 0,72 10,20% 2 380 938 € 242 896 € 

8 000 001 € 10 000 000 € 0,33 0,55 10,01% 1 311 311 € 131 260 € 

10 000 001 € 15 000 000 € 0,25 0,42 10,07% 1 749 854 € 176 177 € 

15 000 001 € 20 000 000 € 0,17 0,29 10,22% 502 601 € 51 379 € 

20 000 001 € 30 000 000 € 0,12 0,20 9,63% 542 100 € 52 205 € 

30 000 001 € 40 000 000 € 0,09 0,15 9,49% 205 971 € 19 544 € 

40 000 001 € 50 000 000 € 0,07 0,11 8,25% 68 155 € 5 622 € 

50 000 001 € 60 000 000 € 0,06 0,09 7,30% 103 444 € 7 552 € 

60 000 001 € 75 000 000 € 0,04 0,07 9,76% 35 921 € 3 507 € 

 

The reinsurer's average loss is estimated at 1 289 128 € based on this modified risk profile. For the actual estimation, pure premium 

calculations have been provided for each Swiss Re curve corresponding to the commercial line of business. The estimated average 

loss decreases when higher-numbered Swiss Re curves are used. This outcome aligns with the fact that the average destruction 

rate associated with Swiss Re Curve 4 is lower than the one of Swiss Re Curves 2 and 3, resulting in lower recovery amounts for 

the reinsurer. 

Table 31: Pure premium comparison 

Exposure curve 𝔼̂(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)𝑃𝑢𝑟𝑒 𝐿𝑜𝑠𝑠 

SwissRe 2 769 161 € 

SwissRe 3 614 893 € 

SwissRe 4 454 834 € 

5.2.4 Loss distribution modeling  

The previously developed method provides an estimate of the average recoveries for an XL treaty. However, this approach does 

not yield a distribution of recoveries or allow for the application of various treaty conditions, leading to a loss of information 

during the modeling process. Nevertheless, it is possible to use exposure curves to generate a recovery distribution, which would 

not only work as a basis for comparison but also provide an alternative when the number of claims is too low. The following 

section outlines the methodology adopted in this study. The SP modeling will also be based on the following methodology. 

5.2.4.1 Modeling sum insured  

To be able to model a given XL treaty's recoveries distribution or ceded losses under a SP treaty, it is first necessary to model the 

covered portfolio risks' random Sum Insured 𝑄 arranged within a set of ranges. If one has access to the detailed sum insured per 

policy within an exposure band, one could fit a bounded nonparametric distribution on 𝑄 for the considered band. In this project, 

since the distribution of sum insured within the exposure band is not available, the Beta distribution has been selected to model 

sums insured due to its bounded nature. Indeed, it takes values within the interval [0; 1], which is convenient since the sums 
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insured are modeled within a range. Furthermore, the Beta distribution can take a wide variety of shapes, making it an ideal 

candidate for modeling the sums insured across all ranges. Additionally, the parameters of the beta distribution are easily estimable 

using the method of moments. 

Consider 𝛼 > 0 and 𝛽 > 0. Considering the underlying risk profile and a given exposure band, the random variable 𝑄 

corresponding to the sum insured is assumed to follow a Beta distribution of parameter (𝛼, 𝛽): 

• Density function: For 1 > 𝑡 > 0, 𝑓(𝑡) =
1

𝐵(𝛼,𝛽)
𝑡𝛼−1(1 − 𝑡)𝛽−1 where 𝐵(𝛼, 𝛽) =  

Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
 

• Mean: 𝔼(𝑄) =
α

𝛼+𝛽
 

• Variance: 𝑉𝑎𝑟(𝑄) =
𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
 

• Cumulative Distribution Function (CDF): For 𝑡 ≥ 0 

𝐹(𝑡) = {
∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢
𝑡

0

𝐵(𝛼, 𝛽)
, 𝑡 ≥ 0 

0, 𝑡 < 0 

 

Here, we consider a range of the risk profile, bounded by 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛, a mean sum insured per range 𝑄𝑚𝑒𝑎𝑛  and the variance 

𝑄𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  per range. Since the beta distribution is defined on the interval [0; 1], one needs to normalize the mean and variance of 

the sum insured within the range. The normalized mean and variance of sum insured are given by the following formulas: 

𝑞𝑚𝑒𝑎𝑛 = 
𝑄𝑚𝑒𝑎𝑛 − 𝑄𝑚𝑖𝑛
𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛

 

𝑞𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 
𝑄𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛)
2 

 

The estimation of the beta distribution parameters is performed with the method of moments. The estimators of the beta parameters  

𝛼 and 𝛽 are thus: 

• 𝛼̂ = 𝑞𝑚𝑒𝑎𝑛 (
𝑞𝑚𝑒𝑎𝑛(1−𝑞𝑚𝑒𝑎𝑛)

𝑞𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
− 1) 

• 𝛽̂ = (1 − 𝑞𝑚𝑒𝑎𝑛)(
𝑞𝑚𝑒𝑎𝑛(1−𝑞𝑚𝑒𝑎𝑛)

𝑞𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
− 1) 

Whenever the variance of the sum insured distribution within a range is not known, as it is the case in the current AGCRe’s risk 

profile database, the variance of the sum insured within the range must still be estimated. To do so, we will use the principle of 

entropy to determine the value of 𝑞𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 .  

In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with 

the variable's potential outcomes. To estimate the variance, the parameter which maximizes this entropy function has been selected. 

Indeed, given the lack of sufficient information about the distribution, maximizing entropy allows us to select the Beta distribution 

that contains the least information, and thus the least arbitrary among all distributions one could use. Maximizing the entropy of 

a parametric distribution family is also equivalent to seeking the distribution that is closest to the uniform distribution. The Nelder-

Mead algorithm is thus used to maximize the following entropy function of the beta distribution: 

argmax
𝛼,𝛽>0

𝔼(−𝑙𝑛 (𝑓(𝑄)) = argmax
𝛼,𝛽>0

 ln(𝐵(𝛼, 𝛽)) − (𝛼 − 1) 𝜓(𝛼) − (𝛽 − 1) 𝜓(𝛽) + (𝛼 + 𝛽 − 2)𝜓(𝛼 +  𝛽) 

Where 𝜓 is the digamma function: 𝜓 =
𝛤′

𝛤
.  
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Since one knows the mean of the beta distribution 𝑞𝑚𝑒𝑎𝑛 =
𝛼

𝛼+𝛽
, the two parameters optimization problem can be reduced to a 

one parameter problem by replacing 𝛽 by 𝛽(𝛼) = 𝛼
1−𝑞𝑚𝑒𝑎𝑛

𝑞𝑚𝑒𝑎𝑛
 :  

argmax
𝛼>0

 ln(𝐵(𝛼, 𝛽(𝛼))) − (𝛼 − 1) 𝜓(𝛼) − (𝛽(𝛼) − 1) 𝜓(𝛽(𝛼)) + (𝛼 + 𝛽(𝛼) − 2)𝜓(𝛼 + 𝛽(𝛼)) 

The parameters 𝛼̂ and 𝛽̂ can then be estimated from the previous equations. 

Sums insured within a risk profile range can be generated by simulating realizations 𝑞 of a Beta distribution with parameters 𝛼̂ 

and 𝛽̂ and derive a distribution of sums insured 𝑄 by applying the following transformation:  

𝑄 = (𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) ∗ 𝑞 + 𝑄𝑚𝑖𝑛 . 

For example, and to illustrate the methodology, the XL treaty defined in 5.2.3 with the risk profile defined in Table 29 will be 

studied. Let us consider the range between 500 001 € and 1 000 000 €. The mean of the sum insured is 690 417 €. By rescaling 

this range between 0 and 1, we get the parameter 𝑞𝑚𝑒𝑎𝑛 = 0.38, which corresponds to the mean of the beta distribution between 

0 and 1. Since the variance of the sum insured for this type of treaty is unknown, the parameters of the Beta distribution are 

assessed using the Nelder-Mead algorithm. After performing the estimation, the following parameters for the Beta distribution 

were obtained: 𝛼̂ = 0.86 and  𝛽 ̂ =  1.40. 

The figure below illustrates the distribution of sums insured within the given range. One can notice the similarity to a uniform 

distribution, although there is a slight concentration of values towards the lower part of the range. This outcome was expected, as 

the entropy maximization approach tends to bring the distribution closer to the uniform distribution. Additionally, since the mean 

sum insured is closer to the lower end of the range, it is consistent for the distribution to show a higher concentration of values in 

this lower segment. 

 

Figure 54: Sum Insured distribution – Range: 500 001 € - 1 000 000 € 
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The same methodology is applied to the others ranges of the risk profile: 

Table 32: Sum Insured distribution parameters 

Range Min Range Max Mean Sum Insured 𝒒𝒎𝒆𝒂𝒏 𝜶 𝜷 

0 € 500 000 € 207 582 € 0,42 0,89 1.22 

500 001 € 1 000 000 € 690 417 € 0,38 0,86 1,40 

1 000 001 € 2 000 000 € 1 411 445 € 0,41 0,88 1,26 

2 000 001 € 3 000 000 € 2 440 524 € 0,44 0,91 1,16 

3 000 001 € 4 000 000 € 3 449 951 € 0,45 0,92 1,12 

4 000 001 € 5 000 000 € 4 466 391 € 0,47 0,95 1,07 

5 000 001 € 6 000 000 € 5 492 338 € 0,49 0,98 1,02 

6 000 001 € 8 000 000 € 6 929 911 € 0,46 0,93 1,09 

8 000 001 € 10 000 000 € 9 009 093 € 0,50 1 1 

10 000 001 € 15 000 000 € 11 952 958 € 0,39 0,87 1,35 

15 000 001 € 20 000 000 € 17 333 912 € 0,47 0,95 1,07 

20 000 001 € 30 000 000 € 24 455 175 € 0,45 0,92 1,12 

30 000 001 € 40 000 000 € 33 538 377 € 0,35 0,85 1,57 

40 000 001 € 50 000 000 € 44 410 781 € 0,44 0,91 1,16 

50 000 001 € 60 000 000 € 54 033 688 € 0,40 0,87 1,31 

60 000 001 € 75 000 000 € 70 750 000 € 0,72 2.17 0,84 

5.2.4.2 Individual claim severity modeling 

Once the distribution of sums insured has been calibrated, the next step is to determine a distribution for the destruction rate. 

Given that the distribution 𝐹 of the destruction rate 𝑥 is supposed to be identical for risks within the same risk group, a specific 

distribution for each range of the risk profile can be parametrized. 

It is important to recall that the exposure curve is derived from the underlying distribution of destruction rates. It implies that the 

CDF 𝐹 of the destruction rates can therefore be deduced from the exposure curve. In this pricing tool development, we exclusively 

use the MBBFED (Swiss Re exposure curves, based on the MBBFED distribution) or the Hyperbolic MBBFED distributions 

(AXA exposure curves).  

Destruction rates can be generated for each range depending on the type of exposure curve picked:   

• MBBFED exposure curve: 

If, within the range, a MBFFED distribution with parameters 𝑏 and 𝑔 is settled on, destruction rates can be simulated 

directly from this distribution. The mean of the destruction rate 𝑥 within the range is thus 𝔼(𝑥) =
ln(𝑔𝑏)(1−𝑏)

ln(𝑏)(1−𝑔𝑏)
 .  

• Hyperbolic MBBFED exposure curve (AXA Exposure Curves): 

If an AXA exposure curve based on a hyperbolic MBBFED distribution is selected, with parameter 𝑚 (estimated using 

the mean sum insured of the range), destruction rates can be generated using the following Monte Carlo technique: 

simulate realizations 𝑢 of a uniform distribution on (0,1) and deduce a distribution of destruction rates 𝑥 with the 

transformation 𝑥 = max(0,min(1,
𝑚𝑢

1−𝑢
)). This transformation is deduced from the CDF of an Hyperbolic MBBFED 

distribution. The mean of the destruction rate within the range is thus 𝔼(𝑥) =  m ∗ ln(1 +
1

𝑚
) 

To simulate individual loss amounts, the destruction rate 𝑥𝑘 is multiplied by the corresponding sum insured 𝑄𝑘 generated in the 

previous step. This assumes the following relationship for individual claim amounts in property insurance: 𝑋𝑘 = 𝑥𝑘 ∗ 𝑄𝑘 . 

This methodology relies on the strong assumption of independence between destruction rates and sums insured. However, in 

practice, this assumption does not always hold - higher sums insured tend to correspond to lower destruction rates compared to 
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smaller sums insured. The AXA exposure curves address this issue by calibrating exposure curves based on the mean sum insured 

for each range, making the approach more realistic. On the other hand, with Swiss Re exposure curves, the same exposure curve 

is used across all ranges, which ignores the dependency between destruction rates and sums insured. This is a limitation of the 

Swiss Re approach and suggests that results derived using these curves should be interpreted with caution. 

5.2.4.3 Frequency modeling 

The sums insured and destruction rates within an exposure range can now be generated, thereby enabling the simulation of 

individual claim amounts. However, one needs to determine the expected number of claims per year. Based on the distribution of 

individual claims amounts and the risk profile, the expected number of claims per attachment year can be deduced using 

assumptions from the collective model.  

Focusing on a specific range ℎ, we model the total loss within this range using the collective risk model previously introduced. 

Recall that the total loss 𝑆ℎ can be expressed as: 

𝑆ℎ = ∑𝑋𝑘,ℎ

𝑁ℎ

𝑘=1

 

Where 𝑁ℎ is a discrete random variable corresponding to the number of losses per the year and (𝑋𝑘,ℎ)1 ≤ 𝑘 ≤ 𝑁ℎ
 is a sequence of 

independent and identically distributed random variables corresponding to a claim 𝑘. Furthermore, it is assumed that for all 𝑘, 𝑁ℎ 

and 𝑋𝑘,ℎ are independent. Under these assumptions, the Wald formula applies:  

𝔼(𝑆ℎ) =  𝔼(𝑁ℎ) ∗ 𝔼(𝑋ℎ) 

Since the distribution of the destruction rate 𝑥ℎ is assumed to be independent from the distribution of the sum insured 𝑄ℎ, one has: 

𝔼(𝑋ℎ) =  𝔼(𝑥ℎ) ∗ 𝔼(𝑄ℎ) 

Furthermore, the total loss per range ℎ of the portfolio risk profile can be estimated with the budgeted loss ratio 𝐿𝑅ℎ and the gross 

premium 1𝐺𝑃ℎ of the current year: 

𝔼̂(𝑆ℎ) = 𝐿𝑅ℎ ∗  𝐺𝑃ℎ 

Given that the distributions 𝑥ℎ and 𝑄ℎ for the range ℎ have been derived, 𝔼(𝑥ℎ) and 𝔼(𝑄ℎ) can thus be estimated. The total loss 

amount is then divided by the individual average loss to estimate of the mean number of losses for the current year according to 

the Wald Formula: 

𝜆ℎ̂ = 𝔼̂(𝑁ℎ) =
𝔼̂(𝑆ℎ)

𝔼̂(𝑥ℎ) ∗ 𝔼̂(𝑄ℎ)
 

The number of losses within the range 𝑁ℎ is supposed to follow a Poisson distribution with mean 𝜆ℎ̂. This choice is motivated by 

the fact that Poisson distributions are commonly used to model the number of claims per year. Moreover, since only the expected 

number of claims per year is known, the Poisson distribution stands out as one of the most suitable candidates for modeling the 

annual claim count. This approach heavily relies on the budgeted loss ratio for each band and does not directly account for the 

underlying distribution. This reliance represents an additional limitation compared to the previously developed frequency-severity 

approach. An inaccurate estimation of the loss ratio will inevitably lead to a flawed modeling of the underlying claims experience. 

Let us consider the example of the previously discussed XL treaty. We remind below the parameters 𝑏 and 𝑔 for the Swiss Re 

exposure curves: 

 
1 For a Loss occurring treaty, the Gross Premium corresponds to the Gross Earned Premium, whereas for a Risk Attaching treaty, the Gross Premium corresponds 

to the Gross Written Premium. 
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Table 33: Swiss Re exposure curves parameters 

Exposure Curve 𝒃 𝒈 𝔼(𝒙) 

Swiss 1 12.65 4.22 34.85 % 

Swiss 2 9.03 7.70 22.61 % 

Swiss 3 3.67 30.57 8.72 % 

Swiss 4 1.11 154.47 3.19 % 

 

Keeping the previous range, with a budgeted loss ratio of 68 % and a gross premium of 19 556 136 €, one has, with Swiss Re 4: 

𝜆ℎ̂ = 𝔼̂(𝑁ℎ) =
𝔼̂(𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠ℎ)

𝔼̂(𝑥ℎ) ∗ 𝔼̂(𝑄ℎ)
= 602,23 

The following table represents the estimated parameters for the rest of the range with Swiss Re 4 exposure curve. 

Table 34: Frequency parameters 

Range Min Range Max 𝔼̂(𝑺𝒉) 𝔼̂(𝑿𝒉) 𝝀𝒉̂ 

0 € 500 000 € 46 176 184 € 6 622 € 6973,29 

500 001 € 1 000 000 € 13 263 701 € 22 024 € 602,23 

1 000 001 € 2 000 000 € 12 443 435 € 45 025 € 276,37 

2 000 001 € 3 000 000 € 6 850 861 € 77 853 € 88,00 

3 000 001 € 4 000 000 € 4 895 628 € 110 053 € 44,48 

4 000 001 € 5 000 000 € 3 385 287 € 142 478 € 23,76 

5 000 001 € 6 000 000 € 1 857 600 € 175 206 € 10,60 

6 000 001 € 8 000 000 € 2 392 917 € 221 064 € 10,82 

8 000 001 € 10 000 000 € 1 302 932 € 287 390 € 4,53 

10 000 001 € 15 000 000 € 1 748 736 € 381 299 € 4,59 

15 000 001 € 20 000 000 € 505 356 € 552 952 € 0,91 

20 000 001 € 30 000 000 € 538 748 € 780 120 € 0,69 

30 000 001 € 40 000 000 € 207 037 € 1 069 874 € 0,19 

40 000 001 € 50 000 000 € 68 076 € 1 416 704 € 0,05 

50 000 001 € 60 000 000 € 103 454 € 1 723 675 € 0,06 

60 000 001 € 75 000 000 € 35 728 € 2 256 925 € 0,02 

5.2.4.4 Obtaining recoveries 

The aim here is to simulate a distribution of recoveries (respectively ceded losses) for XL treaties (respectively SP treaties) 

covering the property LoB. Let us consider a simulated loss year 𝑖 and an exposure range ℎ of the risk pofile. Let 𝑁ℎ
𝑖  be the number 

of simulated losses and (𝑋𝑘,ℎ
𝑖 )

1≤𝑘≤𝑁ℎ
𝑖  the individual loss amount for the considered simulation year 𝑖 and range ℎ. The amounts 

(𝑋𝑘,ℎ
𝑖 )

1≤𝑘≤𝑁ℎ
𝑖  are generated by multiplying simulated destruction rates (𝑥𝑘,ℎ

𝑖 )
1≤𝑘≤𝑁ℎ

𝑖  and sum insured (𝑄𝑘,ℎ
𝑖 )

1≤𝑘≤𝑁ℎ
𝑖 . By repeating 

this process across all ranges, one gets a distribution of individual loss amounts (𝑋𝑘
𝑖 )
1≤𝑘≤𝑁𝑖

 where 𝑁𝑖 = ∑ 𝑁ℎ
𝑖𝐻

ℎ=1  corresponds to 

the total number of claims simulated for the loss year 𝑖. 

5.2.4.4.1 XL per risk  

To derive a distribution of recoveries, the approach mirrors the one developed earlier in the frequency-severity framework. 

Regarding the payment pattern, a single pattern is calibrated using data from the historical individual claims database. Once this 

payment pattern is established, the recovery calculation process is applied as previously described. This results in a distribution 
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of recoveries, denoted as (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

, representing the amounts ceded to the reinsurer under the terms of the 

reinsurance contract. The following figure summarizes the implemented process to model recoveries using exposure pricing for 

XL treaties, which corresponds to process “P8” in Figure 31.
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Figure 55: Exposure modeling process – XL per risk treaties
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5.2.4.4.2 Surplus 

For SP treaties, once distributions (𝑋𝑘
𝑖 )
1≤𝑘≤𝑁𝑖

 and (𝑄𝑘
𝑖 )
1≤𝑘≤𝑁𝑖

 are simulated, it is possible to obtain losses ceded to reinsurance. A 

SP treaty being a proportional form of reinsurance, the individual cession rate must first be calculated. We remind that, for SP 

treaties, the treaty variables used to calculate the cession rate are the retention 𝑅 and the capacity 𝐶. For each claim 𝑋𝑘
𝑖  simulated, 

the individual cession rate 𝑐𝑘
𝑖  is deduced as follows: 

𝑐𝑘
𝑖 =

min(max(0, 𝑄𝑘
𝑖 − 𝑅) , 𝐶)

𝑄𝑘
𝑖

 

From this result, one can compute the distribution of losses ceded to reinsurance (𝑋𝑘
𝑖 ∗ 𝑐𝑘

𝑖 )
1≤𝑘≤𝑁𝑖

 for a simulation year 𝑖.  

To apply the surplus T&C, which in the context of this project are the same as the conditions of QS treaties, we are more interested 

in the annual underlying claim amount represented through ultimate loss ratios. First, for a given simulation, the cedent’s annual 

loss ratio 𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡 is calculated as follows: 

𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡 =

∑ 𝑋𝑘
𝑖𝑁𝑖

𝑘=1

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡
 

Where 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡  corresponds to the covered portfolio GEP (respectively GWP) if the treaty is Loss Occurring (respectively 

Risk Attaching). It can be calculated by summing the gross premium per range 𝐺𝑃ℎ of the risk profile. Hence, a distribution of 

ultimate cedent’s loss ratios is computed (𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
. 

Regarding reinsurer’s losses, for each simulation 𝑖, the amounts (𝑋𝑘
𝑖 ∗ 𝑐𝑘

𝑖 )
1≤𝑘≤𝑁𝑖

 are aggregated into an annual ceded loss amount 

𝐶𝑒𝑑𝑒𝑑 𝐿𝑜𝑠𝑠𝑒𝑠𝑖. One can then determine the distribution of losses ceded to reinsurance (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
. To compute the 

reinsurer's loss ratio, the ceded premium must be determined. Since the total distribution of sum insured and individual is not 

available, the ceded premium is approximated by summing ceded premium across all bands of the risk profile. For a range ℎ, the 

ceded rate 𝑐ℎ is calculated: 𝑐ℎ =
min(max(0,𝑄𝑚𝑒𝑎𝑛,ℎ−𝑅),𝐶)

𝑄𝑚𝑒𝑎𝑛,ℎ
 where 𝑄𝑚𝑒𝑎𝑛,ℎ is the mean sum insured of the corresponding range. The 

ceded premium of the considered range 𝐺𝑃ℎ
𝑐𝑒𝑑𝑒𝑑 is deduced: 𝐺𝑃ℎ

𝑐𝑒𝑑𝑒𝑑 = 𝑐ℎ ∗ 𝐺𝑃ℎ. The ceded premium 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 is 

ascertained by aggregating the ceded premiums of the risk profile. The reinsurer’s loss ratio is then estimated as follows: 

𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = 

𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑
 

To conclude, using the exposure methodology, one has simulated a distribution of cedent’s loss ratio (𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
, a 

distribution of reinsurer’s loss ratio (𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 and ceded losses (𝑆𝑖

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

. The ceded premium 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 has also been calculated. Theses quantities will be used in part 5.3.2.1 to calculate the reinsurer’s commission. 

For now, the figure below describes the process for obtaining losses ceded to reinsurance for SP treaties. The process “P15” will 

be described in part 5.3.2.1. 
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Figure 56: Modeling process - SP 
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5.2.4.5 Comparison with experience pricing (XL per risk) 

As a comparison, we will evaluate the differences between the two modeling methods for a reinsurance program, where the first 

layer corresponds to the treaty discussed in this section. The program consists of three layers, where the remaining two layers 

have the following properties:  

• Limit: 5 000 000 € (layer 2), 10 000 000 € (layer 3) 

• Retention: 5 000 000 € (layer 2), 10 000 000 € (layer 3) 

• Reinstatement: 2 reinstatements available, each at 100% of the original premium (layer 2), 1 reinstatement available, 

each at 100% of the original premium (layer 3) 

• Indexation Clause: None.  

• Loss Basis: Loss Occurring 

• AAD/AAL: No Annual Aggregate Deductible (AAD) and an Annual Aggregate Limit (AAL) of 15 000 000 € (layer 2) 

and 20 000 000 € (layer 3) 

For the frequency distribution, a negative binomial distribution with parameters 𝑛̂ = 4.34 and 𝑝̂ = 0.38 was fitted. Regarding the 

severity distribution, the top four distributions identified using the previously developed method, ranked in order, are the Gaussian 

Kernel, ME Pareto, ME GPD and GPD (MLE). The fit statistics and the CDF functions are detailed in appendix C. 

Based on the following QQ plot, one can notice that the frequency-severity approach struggles to accurately model the underlying 

claims behavior. The quantiles of the fitted distributions deviate significantly from the bisector, indicating a mismatch between 

the model and the observed data. Additionally, no historical claim has ever reached the retention of the highest layer, making the 

recovery estimation of the final layer challenging. 

 

Figure 57: QQ plot – XL exposure pricing 

Considering these challenges, the exposure method can serve as an alternative approach to estimate risks indicators, including the 

premium of the treaty. For premium calculation, the average recoveries will, for now act as an approximation of the premium. 

Regarding the exposure method, the details of the simulated claim frequency and severity distributions are provided in the 

following graphs, using the Swiss Re 4 exposure curve. The simulations yield an average of 619 claims per year, with an individual 

claim cost averaging approximately 22 000 €. 
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Figure 58: Distribution of claim number per year – exposure modeling 

    

 

Figure 59: Distribution of individual claims amounts – exposure modeling 

To calculate the average recoveries, 50,000 simulations were conducted for each of the Swiss Re exposure curves applicable to 

commercial LoB, namely Swiss Re 2, 3, and 4. Similarly, 50,000 simulations were performed for the frequency-severity approach 

using the four best-performing severity distributions. Additionally, a pure recovery estimation method was also computed (see 

5.2.3). The tables below summarize the results for the average recovery estimation: 

Table 35: Recovery mean – frequency/severity 

Layer Frequency distribution Severity distribution 𝔼̂(𝑺𝒓𝒆𝒊𝒏𝒔𝒖𝒓𝒆𝒓) 

1 Negative binomial Gaussian Kernel 759 625 € 

1 Negative binomial ME - Pareto 732 504 € 

1 Negative binomial ME - GPD 748 036 € 

1 Negative binomial GPD (MLE) 627 251 € 

2 Negative binomial Gaussian Kernel 384 780 € 

2 Negative binomial ME - Pareto 351 481 € 

2 Negative binomial ME - GPD 362 108 € 

2 Negative binomial GPD (MLE) 212 356 € 

3 Negative binomial Gaussian Kernel 0 € 

3 Negative binomial ME - Pareto 10 976 € 

3 Negative binomial ME - GPD 14 916 € 

3 Negative binomial GPD (MLE) 0 € 
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Table 36: Recovery mean – exposure pricing 

Layer Exposure curve 𝔼̂(𝑺𝒓𝒆𝒊𝒏𝒔𝒖𝒓𝒆𝒓)𝑷𝒖𝒓𝒆 𝑳𝒐𝒔𝒔 𝔼̂(𝑺𝒓𝒆𝒊𝒏𝒔𝒖𝒓𝒆𝒓) 

1 SwissRe2 769 161 € 744 112 € 

1 SwissRe3 614 894 € 582 312 € 

1 SwissRe4 454 835 € 441 022 € 

2 SwissRe2 867 365 € 885 422 € 

2 SwissRe3 658 635 € 638 624 € 

2 SwissRe4 457 874 € 444 018 € 

3 SwissRe2 657 368 € 655 255 € 

3 SwissRe3 458 724 € 449 981 € 

3 SwissRe4 281 205 € 284 796 € 

 

The frequency-severity method produces comparable results for the first and second layers across the top three severity 

distributions. However, the GPD distribution reflects more divergent results, which was anticipated due to its higher Kolmogorov-

Smirnov and Cramér-von Mises distances, as well as the rejection of the null hypothesis for this distribution. For the third layer, 

the estimated recovery amounts are low across all four distributions, reflecting the model's challenges in estimating extreme values 

for higher layers. 

In contrast, the exposure method reveals significant variations based on the selected exposure curve. The Swiss Re 2 curve 

generates the highest recovery amounts due to its higher destruction rate, which increases the likelihood of claims reaching 

retentions compared to Swiss Re 3 and 4 curves. Additionally, the recovery means are more heterogeneous when using the Swiss 

Re curves, underscoring the influence of curve selection and highlighting the dependence with the choice of the exposure curve. 

The exposure method also predicts higher recovery amounts for the second and third layers compared to the frequency-severity 

method. Furthermore, the impact of the discounting rate using the exposure method is low for each exposure curve. This outcome 

can be attributed to the characteristics of the property line, where short payment patterns minimize the temporal impact of 

discounting. Additionally, the absence of a stabilization clause further reduces the differences between the estimated recovery 

amount for the exposure curve method. 

To provide additional context, market premiums for these treaties are presented below, offering a reference point for the calculated 

recoveries. 

Table 37: Market premiums 

Layer Market premium 

1 569 155 € 
 

2 474 295 € 
 

3 284 577 € 
 

 

The frequency-severity method struggles to accurately match the market premium in this case, showing a deviation of 

approximately +28% for layer 1 using the ME Pareto and ME GPD distributions, and -25% for layer 2. For layer 3, the frequency-

severity method appears unsuitable, as it predicts recovery amounts close to zero. 

In contrast, the exposure curve approach delivers better results. For instance, the Swiss Re 4 curve, initially selected to model the 

destruction rate, provides relatively accurate recovery estimates for the treaty, with deviations of less than 10% for layers 2 and 3. 

However, for layer 1, the Swiss Re 3 exposure curve performs better. Indeed, the Swiss Re 3 curve is more commonly used for 

medium-scale commercial property claims, which are more likely to impact layer 1 and fall within the treaty’s scope. Conversely, 

higher layers are more influenced by large-scale claims, making the Swiss Re 4 curve more suitable for layers 2 and 3. This 
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highlights the importance of selecting an appropriate exposure curve and suggests the potential benefit of combining different 

curves within the same risk profile, an approach not yet implemented in the tool. 

This analysis illustrates an alternative method for estimating recoveries under an XL treaty. However, this method is limited to 

property and liability treaties to treaties liability to a lesser extent and should be used cautiously due to its reliance on the exposure 

curve/ budgeted loss ratios within the risk profile. As a conclusion, the exposure method could be used as a mean of comparison 

and could be particularly valuable for higher layers where retentions are high. 

5.2.5 Liability treaties 

In liability insurance, the sum insured is not equal to the maximum amount of a possible third-party claim but is just a limit of 

indemnity chosen by the insured up to which he wants to be reimbursed by the insurer in case of any third-party claims. Therefore, 

the assumption used for property treaties that the distribution of 𝑥𝑖 =
𝑋𝑖

𝑄𝑖
 does not depend on 𝑖 is not realistic here because risks 

with identical claims exposure may have greatly varying sums insured. Nevertheless, we propose a first approach based on (Mack 

& Fackler, 2003) for modeling liability treaties using exposure curves. However, this approach is still exploratory and suffers from 

several shortcomings but could lay the foundations for future improvements. 

To use exposure curve for liability insurance, we make the following assumptions based on (Mack & Fackler, 2003). Let 𝑃𝑖(𝑄𝑖) 

be the net premium for a risk with limit of indemnity 𝑄𝑖  and for a risk 𝑖 facing the claim severity 𝑋. Let 𝑧 be the percentage of 

premium increasing if the limit of indemnity doubles, i.e., 𝑃𝑖(2𝑄𝑖) = (1 + 𝑧)𝑃𝑖(𝑄𝑖). Here, 𝑄𝑖  acts only as limit of indemnity and 

not as a measure of the size of the risk like in property insurance. One can then obtain the Riebesell's formula: 

𝔼(min(𝑋, 𝑄)) = 𝑃𝑖(𝑄) = 𝑃𝑖(𝑄𝑖)(
𝑄

𝑄𝑖
)𝑙𝑑(1+𝑧) 

Where 𝑄 represents any positive limit of indemnity. Then, if the risk 𝑖 with limit indemnity 𝑄𝑖  is facing the claim severity 𝑋, its 

exposure curve 𝐺𝑖 is, for 𝑅 ≤ 𝑄𝑖: 

𝐺𝑖(𝑅) =  
𝔼(min(𝑋, 𝑅))

𝔼(min(𝑋, 𝑄𝑖))
=
𝑃𝑖(𝑅)

𝑃𝑖(𝑄𝑖)
=  (

𝑅

𝑄𝑖
)𝑙𝑑(1+𝑧) 

If 𝑅 > 𝑄𝑖, 𝐺𝑖(𝑅) = 1. 

Thus, knowing the parameter 𝑧, one could use risk profiles to approximate the pure Loss of XL treaties following the methodology 

detailed in part 5.2.3. However, modeling a distribution of losses is more challenging, since only  𝔼(min(𝑋, 𝑄)) can be calculated 

for a given limit of indemnity 𝑄. Furthermore, it would be necessary to fix a standard premium and a standard sum insured related 

to 𝑧, which would require further studies. Assuming the parameters 𝑧, 𝑃𝑖(𝑄𝑖) and 𝑄𝑖  are determined, we could apply the previously 

developed methodology to derive a distribution of recoveries (for XL treaties) or losses (for SP treaties). This would be based on 

the formula 𝑃𝑖(𝑄𝑖)(
𝑄

𝑄𝑖
)𝑙𝑑(1+𝑧) to estimate the expected individual loss. 

This methodology represents an initial approach, heavily dependent on the parameters 𝑧, 𝑃𝑖(𝑄𝑖) and 𝑄𝑖 , in addition to other factors 

within the risk profile. Accurately estimating these quantities at a granular level for the risk profile is challenging and was not 

made in this project. However, within the tool, these values can be fixed by the user and allow generating loss distribution. 

Modeling liability treaties through the exposure methodology will require further development and should be considered as an 

exploratory step towards generalizing the exposure curve methodology to other lines of business. 
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5.3 Modeling losses based on loss ratios (QS, AGG and SP) 

Previously, we examined how recoveries for XL treaties were modeled and we detailed how ceded losses/reinsurer’s LR are 

simulated for SP treaties in this actuarial work. The following part will focus on modeling underlying losses for QS and AGG 

treaties, which are treaties that are not currently modeled within the internal model. We will eventually detail how the treaty’s TC 

are applied for QS/SP and AGG treaties. 

To do so, the annual loss ratios underlying these QS and AGG treaties will be modeled. This direct modeling approach was retained 

for several reasons. While it would have been possible to consider the set of claims related to the treaties and adopt a frequency-

severity approach - like the method used for XL treaties - this option was not retained due to operational and computational 

challenges. One would need to model attritional, atypical and CAT claims separately and through different methods to model 

properly AGG or QS. Collecting such granular data for all cedents and parametrize each distribution would thus be complex. 

Consequently, cedents are instead asked to directly provide aggregated loss triangles, simplifying data collection across all cedents. 

Additionally, for computational efficiency, modeling loss ratios is more practical for QS and AGG treaties, as these cover 

aggregated portfolios. Simulating individual claims would require significant computational resources due to the potentially high 

claim volumes. However, a lack of sufficient historical data can sometimes complicate the modeling process, especially for newer 

lines of business with limited historical experience (e.g., QS treaties covering the Cyber LoB). 

Furthermore, the currently available aggregated historical claims data cannot be used directly, as it does not include all claims 

incurred by the entities. To address this limitation, exhaustive data must be collected from the entities. Throughout this section, 

the examples provided will rely on simulated data to illustrate the methodology developed within the tool. 

5.3.1 ULR modeling (QS and AGG) 

For both AGG and QS treaties, losses will be modeled based on the underlying modeling of the ultimate loss ratio (ULR) (see 

4.2). Let us denote the vector of historical ULRs for the treaty under consideration as (𝑈𝐿𝑅𝑖)1≤𝑖≤𝑛. To model the ultimate loss 

ratio, an array of continuous distributions - both parametric and non-parametric - are employed to estimate the ULR distribution.  

5.3.1.1 Continuous distributions 

The continuous distributions calibrated based on all observations (𝑈𝐿𝑅𝑖)1≤𝑖≤𝑛 are listed below: 

• Exponential distribution 

• Log Normal distribution  

• Gamma distribution 

• Generalized Pareto distribution 

• Weibull distribution 

• Fréchet distribution 

• Gaussian Kernel 

The parameters of these distributions were described in detail in the previous section. Loss ratios modeling does not require the 

complexity of spliced distributions, as the available data may not always be sufficient to justify their use. Moreover, loss ratios 

are rarely extreme compared to individual claims, primarily due to the diversification effect across the considerable number of 

insurance policies covered. This reduces the likelihood of exceedingly high loss ratios and avoids the heavy-tailed behavior 

typically observed in claim severity distributions. 
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5.3.1.2 Parameter estimation 

For each of the distributions considered, two statistical methods will be used to evaluate their parameters, as in the frequency-

severity approach for XL treaties: 

• Maximum likelihood estimation 

• Moment matching method 

Estimation using the Gaussian Kernel is obtained directly from empirical data. 

5.3.1.3 Selection of loss ratio distribution 

Regarding the selection of the most appropriate distribution, the same method used for modeling severity will be applied (see 

5.1.2.4). A similar ranking process is employed to evaluate and compare the fitted distributions, allowing us to identify the best 

fits. 

5.3.2 Recoveries modeling 

Once the parameters of the ULR distribution have been established and the appropriate distribution selected, the next step in the 

Monte Carlo estimation process is to obtain a distribution of amounts ceded to reinsurance. To achieve this, 50 000 years of loss 

experience will be simulated (𝑁𝑠𝑖𝑚𝑢𝑙 = 50000). Since treaty conditions differ between QS/SP and AGG treaties, it results in 

distinct methods for calculating recoveries. These methods will be detailed separately in the following sections. 

5.3.2.1 Quota Share and Surplus 

Once a distribution of loss ratios has been simulated, which accounts for the gross loss ratio of the insurer, the treaty conditions 

should be applied to determine the reinsurer’s losses. QS and SP treaties can have several clauses and parameters:  

• A subject premium 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 , corresponding to the covered portfolio GEP (respectively GWP) if the treaty is 

Loss Occurring (respectively Risk Attaching) 

• A cession rate 𝑐 (only for QS treaties) 

• A ceded 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 . For QS treaties, the ceded premium corresponds to 𝑐 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 while for SP treaties 

the ceded premium corresponds to the sum of individual ceded premiums. Its calculation has been detailed in part 

5.2.4.4.2. 

• A commission rate: 𝑟𝐶𝐹  if it is fixed, 𝑟𝐶𝑆𝑆(. ) if it is calculated on a sliding scale 

• A loss corridor (only for QS treaties in this project) 

• A profit sharing depending on 𝑟𝑝𝑟𝑜𝑓𝑖𝑡 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 (the profit-sharing rate) and 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑟𝑔𝑖𝑛  (margin the reinsurer wishes to 

retain on the treaty) 

These various clauses have an impact on the loss ratio borne by the reinsurer and must be considered in the calculation of the 

reinsurer's final obligations. In a nutshell, these clauses will enable us to compute the following distributions: 

• (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 and (𝐿𝑅𝑖

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

 which corresponds to the distribution of ceded losses and loss ratios 

ceded to the reinsurer (net of loss corridor effect for QS treaties) 

• (𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖)1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙 which is the corresponding commission amount paid by the reinsurer 

• (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛))

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 and (𝐿𝑅𝑖

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛))
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

 which denotes the reinsurer’s losses  

and loss ratios, considering the commission amount 

• (𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖)1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙 which is the reinsurer’s result without the profit-sharing clause 
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• (𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖)1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙  which is an optional commission paid by the reinsurer, depending on the experience 

account 

• (𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 and (𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

, with 

(𝑁𝑒𝑡 𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 and (𝑁𝑒𝑡 𝐿𝑅𝑖

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

  which are the net reinsurer’s 

losses and loss ratios, without any tax considerations 

The following part will detail how these distributions are calculated within the reinsurance pricing tool developed and their 

corresponding formulas. 

Let (𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 represents the simulated distribution of ultimate cedent’s loss ratio. It corresponds to the ratio between 

the applicable losses and the subject premium. Let 𝑃𝑃 = (𝑃𝑃𝑗)1 ≤ 𝑗 ≤ 30 be the payment pattern calibrated for the QS/SP treaty to 

be priced.  

Each 𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡 is then projected over time to obtain a vector of cumulative loss ratios: 

𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡 = (∑𝑃𝑃𝑘

𝑗

𝑘=1

∗ 𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡)

1 ≤ 𝑗 ≤ 30

 ∈ ℝ30 

For SP treaties, each 𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  is also projected accordingly: 

𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (∑𝑃𝑃𝑘

𝑗

𝑘=1

∗ 𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

1 ≤ 𝑗 ≤ 30

 ∈ ℝ30 

Afterwards, the treaty conditions are applied to get the distribution of loss ratios and the loss amounts borne by the reinsurer. 

These distributions will be used to calculate various indicators for pricing analysis. 

5.3.2.1.1 Loss corridor (QS) 

A loss corridor is a clause where the cedent retains full liability for losses within a specified corridor, meaning that no claims or 

premiums are ceded to the reinsurer for loss ratios falling within this range. Loss corridors are generally set at high thresholds, 

with the objective of encouraging insurers to price their contracts accurately and ensuring that the reinsurer is shielded from 

excessively high losses. In this project, loss corridor clauses has been considered only for QS treaties.  

A Loss corridor clause includes two variables: 

• 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐿𝐶  which represent the lower bound of the loss corridor 

• 𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐿𝐶  which represents the upper bound of the loss corridor 

When the gross loss ratio is between these two limits, the reinsurer does not intervene, i.e., no claims are ceded to the reinsurer 

and the gross loss ratio is not impacted. Let us define the function 𝑓𝑛𝑒𝑡 𝑙𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟  such that: 

𝑓𝑙𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟(𝐿𝑅
𝑐𝑒𝑑𝑒𝑛𝑡) = 𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡 −min( (0, 𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡 − 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐿𝐶 )+, 𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐿𝐶 − 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐿𝐶 )  

To obtain the ceded losses of a given simulation year 𝑖, the ceded premium is needed. For QS treaties, it corresponds to the product 

of the subject premium 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 of the treaty by the cession rate of the treaty: 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 = 𝑐 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡  

Then, the cumulated ceded losses and the reinsurer’s LR considering the loss corridor effect can be derived as follows:  
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𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (𝑓𝑙𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟 ((𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑐𝑒𝑑𝑒𝑛𝑡 )
𝑗
) ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑  )

1 ≤ 𝑗 ≤ 30
∈ ℝ30 

𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 =

𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑
 ∈ ℝ30 

One can get the scalar value of these quantities as follows: 

𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (𝑆𝑖,𝑐𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 )
𝑗=30

∈ ℝ  

𝐿𝑅𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 )
𝑗=30

∈ ℝ  

Consider, for example, a simulated loss ratio of 80%, within the scope of a QS treaty with a loss corridor ranging from 50% to 

75%. The figure below illustrates the evolution of the gross loss ratio for both the cedent and the reinsurer. 

 

Figure 60: Impact of a loss corridor on a GLR 

The long-term evolution of the loss ratio reflects the long-tail nature of the portfolio covered by the treaty. Furthermore, one can 

notice the loss corridor effect during the development years 12 to 17. During these years, the cedent’s loss ratio falls within the 

boundaries of the loss corridor, meaning the reinsurer does not assume any liability for losses in this range. As a result, the 

reinsurer's loss ratio remains unaffected and only starts to rise from year 18 onwards, when the cedent’s loss ratio exceeds the 

corridor thresholds. This loss corridor has allowed the reinsurer to bear fewer losses than the cedent, limiting its exposure. 

5.3.2.1.2 Commission application (fixed and sliding scale) 

For QS and SP treaties, the premium amount earned by the reinsurer is directly known and no premium can be fixed by the 

reinsurer. To influence the "price" of the QS or SP treaty, the reinsurer generally pays a commission to the cedent. This commission 

can either be fixed or, depending on the actual loss experience of the ceding company, calculated on a sliding scale.  

If the commission is fixed, a percentage 𝑟𝐶𝐹  is indicated which is then transformed into an amount by multiplying the ceded 

premium with this percentage. The projected cumulative ceding commissions (in percent) simply corresponds to: 

 𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% = (𝑟𝐶𝐹  )1 ≤ 𝑗 ≤ 30 
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If the commission is based on a sliding scale, the calculation becomes more complex. A sliding scale commission is a percentage 

of the ceded premium, which varies according to the cedent’s loss ratio. In such a case, the following information must be provided: 

• A minimum loss ratio 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆  and a maximum loss ratio 𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆  

• The commission rate for the lower limit 𝑟𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆  and the upper limit  𝑟𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆  

There are diverse types of sliding scale commissions. In this report, only the most used sliding scale commission has been 

calibrated, which corresponds to a linear commission. The commission payable by the reinsurer to the ceding company is 

calculated as follows: if the loss ratio (after deduction of the loss corridor) is less than 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆  (resp. greater than 

𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 ), the commission rate is equal to 𝑟𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆  (resp. 𝑟𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 ). If the loss ratio is between 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆  and 

𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 , the commission is linearly interpolated. 

Let us define the function 𝑟𝐶𝑆𝑆 such that for a variable 𝐿𝑅 ∈ ℝ : 

𝑟𝐶𝑆𝑆(𝐿𝑅) = {

𝑟𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆

𝑟𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 + 𝑎𝐶𝑆𝑆 ∗ (𝐿𝑅 −  𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆 )

𝑟𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆

   

𝐿𝑅 ≤  𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆

                             𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 ≤ 𝐿𝑅 ≤ 𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆

𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 ≤  𝐿𝑅

  

With 𝑎𝐶𝑆𝑆 = 
𝑟𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 −𝑟𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆

𝐿𝑅𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝐶𝑆𝑆 − 𝐿𝑅𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝐶𝑆𝑆 . 

To illustrate the evolution of the sliding scale commission 𝑟𝐶𝑆𝑆, the figure below displays the evolution of a sliding scale defined 

between 60% and 80%, with a 30% commission at the lower bound (60%) and 10% at the upper bound (80%).  

 

Figure 61: Effect of a sliding scale commission 

In our study, the 𝑟𝐶𝑆𝑆 function will be applied to the vector 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡  to calculate the commission amount at each time step, 

resulting in the vector 𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% : 

𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% = (𝑟𝐶𝑆𝑆 ((𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑐𝑒𝑑𝑒𝑛𝑡 )
𝑗
))
1 ≤ 𝑗 ≤ 30

 

One can also calculate the financial cumulative ceding commission and the total: 

𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 = 𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 ∈  ℝ

30 
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𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖 = (𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% )

𝑗=30
∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 ∈  ℝ 

5.3.2.1.3 Profit-sharing mechanism 

QS and SP treaties may also include profit-sharing clauses. Profit sharing is an incentive mechanism where the reinsurer shares a 

portion of the treaty's profitability with the ceding company. 

The profit sharing is calculated based on the experience account vector (expressed as a percentage of the ceded premium) which 

is computed as follows: 

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% = (1 − (𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)
)
𝑗
− 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑟𝑔𝑖𝑛)

1 ≤ 𝑗 ≤ 30

 

Where: 

𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)

= 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 + 𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

% + 𝑟𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 

And 𝑟𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 denotes the rate used to calculate treaty’s allocated expenses 

It is then possible to determine the vector 𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
%  and the scalar 𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖 as follows: 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% = (𝑟𝑝𝑟𝑜𝑓𝑖𝑡 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 ∗ ((𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

% )
𝑗
)
+
)
1 ≤ 𝑗 ≤ 30

∈  ℝ30 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖 = (𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
% )

𝑗=30
∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 ∈  ℝ 

5.3.2.1.4 Obtaining recoveries 

The cumulated reinsurer’s net loss ratio for a considered simulation 𝑖 is thus: 

𝑁𝑒𝑡 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)
+ 𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

% ∈ ℝ30 

By multiplying the vector 𝑁𝑒𝑡 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟  with the expected ceded premium of the treaty 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 , one can measure the 

cumulative and scalar reinsurer’s net loss over the years: 

𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = 𝑁𝑒𝑡 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 ∗   𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑  ∈ ℝ
30 

𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

= (𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 )

𝑗=30
 ∈  ℝ 

As in the previous part, one can derive the incremental cash flows and discount them in order to obtain the vector 

𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

∈ ℝ30 and the scalar 𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

 (see 5.1.3.2). 

Over all simulated years 𝑖 = 1,… , 𝑁𝑠𝑖𝑚𝑢𝑙, a vector of reinsurer’s net losses  (𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

 is 

simulated.  

The different steps of the QS modeling process developed and implemented in this paper are summarized in the following figure. 
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Figure 62: Modeling process – QS treaties 
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5.3.2.2 Aggregate 

An AGG treaty being a non-proportional treaty, the method implemented for determining its recoveries is similar to the one 

developed for XL treaties in this work. 

One is reminded that the information available for an AGG treaty includes its limit, denoted as 𝐿% and its retention, denoted as 

𝑅% and expressed as a percentage of the covered portfolio total premium volume (the subject premium). To align with the previous 

framework, the treaty parameters are converted into amounts by multiplying these percentages with the subject premium 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 . The resulting amounts are given by 𝑅 = 𝑅% ∗  𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡  and 𝐿 =  𝐿% ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡  

Once a distribution of gross loss ratios (𝐿𝑅𝑖
𝑐𝑒𝑑𝑒𝑛𝑡)

1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙
 simulated, each gross loss ratio 𝐿𝑅𝑖

𝑐𝑒𝑑𝑒𝑛𝑡 is then multiplied by the 

amount 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡  to obtain the distribution (𝑆𝑖)1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙 which corresponds to the aggregated annual loss. Each amount 

𝑋𝑖 is then projected over time to obtain a cumulative aggregate loss vector 𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡 = (∑ 𝑃𝑃𝑡

𝑗
𝑡=1 ∗ 𝑋𝑖)1 ≤ 𝑗 ≤ 30  ∈ ℝ

30 where 

𝑃𝑃 = (𝑃𝑃𝑗)1 ≤ 𝑗 ≤ 30 is the calibrated payment pattern. 

Once the vector 𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡  has been computed for each year, the treaty conditions are applied to get recovery amounts: 

𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 = (min(((𝑆𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑐𝑒𝑑𝑒𝑛𝑡 )
𝑗
− 𝑅)

+
, 𝐿))

1≤𝑗≤30

 ∈ ℝ30 

As in the previous part, one can obtain the cash flows of recoveries and the discounted cash flows in order to obtain the vector 

𝑆𝑖,𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

∈ ℝ30 and the scalar 𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

 (see 5.1.3.2). 

Over all simulated years 𝑖 = 1,… , 𝑁𝑠𝑖𝑚𝑢𝑙, a vector of recoveries  (𝑆𝑖
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

)
1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙

 corresponding to the amount 

ceded to the reinsurer under the AGG treaty is modeled.  

The different steps of the implemented AGG modeling process are summarized in the following figure. 

 

In conclusion of this section, we proposed a method for generating loss distributions for XL per risk treaties through an automated 

frequency-severity model based on the entity own experience as well as an approach based on exposure curves for property 

treaties. This approach was implemented to model SP treaties within the property LoB, which were not assessed through the 

internal model and thus constitutes a first attempt to address part of the considered problematic, which aimed at increasing the 

number of treaties that can be priced by AGCRe using their internal data. The same applies to AGG and QS treaties, for which we 

suggested a method for simulating cedent’s losses based on automated fitting and ranking of candidate distributions leading to the 

generation of loss ratios. 
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Figure 63: Modeling process – AGG treaties 
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6. Pricing indicators 

After detailing the retained methods for modeling the amounts ceded to reinsurance, we now reach the final phase of the actuarial 

thesis, which involves generating indicators used for the overall risk evaluation of the treaty in a centralized manner, which is the 

final objective of the problem at hand. This section highlights the advantage of choosing Monte Carlo simulations, as they allow 

us to estimate the reinsurer’s losses and derive a wide range of quantitative metrics, such as risk and profitability indicators. Since 

the treaty’s characteristics differ, a distinction will be made based on whether the treaty is proportional or non-proportional, and 

the indicators generated will not be the same for each type. 

The following section will therefore focus on outlining the selected indicators and their estimation. The following figure presents 

the pricing process leading to the estimated indicators. 

 

Figure 64: Pricing process 
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6.1 Non-proportional treaties  

Throughout this chapter, let us resort to the classical notation 𝑹 to designate the random recoveries under an XL per risk or 

an AGG treaty. The previous chapter has been dedicated to approximating the probability distribution of that random variable 

through the Monte Carlo method. 

6.1.1 Technical premium  

The most important task when evaluating a non-proportional reinsurance treaty is determining the appropriate premium the cedent 

must pay to the reinsurer. Similar to premiums in primary insurance markets, an actuarial reinsurance premium is made up of the 

expected reinsured loss from the underlying risk plus a safety loading. Additionally, the final reinsurance premium must include 

a margin to cover various costs such as administrative expenses, participation in acquisition expenses, runoff costs, taxes, asset 

management fees, and the reinsurer's profit. 

The technical premium for a non-proportional treaty can therefore be defined as follows: 

𝑇𝑃 =  
𝔼(𝑅) + 𝑆𝐿(𝑅) + 𝐴𝐸 + 𝑇𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 

(1 + 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟)
 

Where:  

• 𝔼(𝑅) corresponds to the pure premium. The pure premium is the portion of the technical premium that allows the 

reinsurer to cover the losses incurred by the cedent, assuming zero management expenses and without accounting for the 

reinstatement premium.  

• 𝐴𝐸 denotes the allocated expenses. The latter does not depend on the underlying distribution of recoveries but is 

influenced by the number of layers within the reinsurance program and the associated underwriting and run-offs expenses, 

among others according to AGCRe’s practices. 

• 𝑆𝐿 correspond to the safety loadings. This factor depends on the underlying distribution of recoveries and will be the 

subject of a detailed analysis in this section. 

• 𝑇𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡𝑠  refers to the tax effects on benefits related to the reinsurance transaction net result.  

• (1 + 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟) refers to the impact of the reinstatement premium on the calculation of the technical premium. In the 

case of an aggregate treaty, this factor is equal to 1, as no reinstatement premium has been modeled. 

The challenge in estimating the pure premium lies in accurately determining the safety loading, as it depends on multiple factors, 

which do not necessarily rely on the underlying distribution of recoveries. These factors could depend on the cedent financial 

stability or on management decisions regarding the acceptance of risks or demands for higher margins.  

In this study, we have opted to primarily focus on the traditional actuarial approach to pricing, using the distribution of recoveries 

obtained by Monte Carlo.  

6.1.1.1 Classical approach for modeling safety loadings 

Let us first focus on the various premium principles commonly used in actuarial literature for calculating safety loadings. Some 

of the safety loading principles implemented in this project are listed below:  

• Expected value principle: 

This premium calculation principle is based on a safety loading proportional to the expected loss: 

𝑆𝐿(𝑅) = 𝜃 ∗ 𝔼(𝑅) 
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• Variance principle: 

If information on the variance of 𝑅 is available, then another common principle is to choose the safety loading proportional to that 

variance: 

𝑆𝐿(𝑅) =  𝛼𝑉𝑎𝑟 ∗ 𝑉𝑎𝑟(𝑅) 

• Standard deviation principle: 

By replacing the variance with the standard deviation, one gets the standard deviation principle: 

𝑆𝐿(𝑅) =  𝛼𝜎 ∗ 𝜎(𝑅) 

This approach has the advantage of having a safety loading expressed in the same unit as the pure premium. 

• Exponential principle: 

By determining a risk aversion coefficient 𝑎, one can compute a safety loading according to the exponential principle:  

𝑆𝐿(𝑅) =  
1

𝑎
log( 𝔼(𝑒𝑎𝑅)) − 𝔼(𝑅)  

• Utility principle: 

Based on utility theory, under which the premium is determined as the solution of the equation 𝑢(𝑤)  =  𝔼(𝑢(𝑤 +  𝑃 −  𝑅)), 

where 𝑢(𝑥)1 is the utility for the reinsurer of having capital 𝑥, whereas 𝑤 is the current surplus and 𝑃 is the premium for which 

this entity is indifferent about entering the contract in the sense of expected utility. If 𝑉𝑎𝑟(𝑅) is small, one can approximate 𝑃 by 

𝔼(𝑅) +
|𝑢′′(𝑤)|

2𝑢′(𝑤)
∗ 𝑉𝑎𝑟(𝑅), leading to the following safety loading: 

𝑆𝐿(𝑅) =  
|𝑢′′(𝑤)|

2𝑢′(𝑤)
∗ 𝑉𝑎𝑟(𝑅) 

• Esscher premium principle:  

Another approach is to distort the distribution of recoveries by transforming its probability mass. If this distortion is done by an 

exponential function, one obtains the Esscher premium safety loading:  

𝑆𝐿(𝑅) =  
𝔼(𝑅𝑒ℎ𝑅) 

𝔼(𝑒ℎ𝑅)
−  𝔼(𝑅) 

These different premium principles, even if they are risk measures, expose us to various criteria. For these safety loading 

principles, different parameters need to be estimated. Specifically, for the variance, expected value, and standard deviation 

principles, a multiplicative factor must be assessed. This factor can either be chosen arbitrarily or modeled, for instance, by 

simulating recoveries for different treaties and performing an estimation through linear regression using market premiums. 

Unfortunately, this analysis was not conducted in the study, leaving the choice of the multiplicative parameters to the reinsurance 

pricing tool user's discretion. The following section will, however, outline the method adopted for estimating these parameters for 

the standard deviation and variance principles. For other principles, parameter estimation is more complex, as no direct 

relationship can be established with market premiums, and thus largely depends on user preferences, especially in the selection of 

utility functions and risk-aversion coefficients. Nevertheless, these premiums will be calculated for information, based on the 

parameters set by the user.  

 
1 The CCRA utility function has been used to mode the reinsurer’s utility 
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6.1.1.2 Cost of capital approach for modeling safety loadings 

Another significant limitation of the previously defined premium principles lies in addressing solvency considerations. An 

insurer’s solvency is its ability to fulfill its commitments to policyholders using the resources at its disposal, such as capital and 

investments. When underwriting reinsurance treaties, the reinsurer agrees to assume more risk, and the solvency regulatory 

framework requires them to hold additional capital to cover this additional risk. This ensures that the reinsurer maintains a 

sufficiently high level of capital, allowing the business to remain solvent even during exceptionally adverse years or events. This 

solvency consideration gives rise to two principles for calculating the treaty premium: the first one is based on a more traditional 

and historical approach, while the second is aligned with many regulatory frameworks. To illustrate these principles, the 

aggregated premium will be considered rather than individual premiums. The methods used to derive individual premiums will 

be based on this approach. 

Historically, solvency was assessed using the ruin probability, which measures the likelihood of a reinsurer’s surplus process 𝐶(𝑡) 

becoming negative over a given period. The classical model for 𝐶(𝑡) is the Cramér-Lundberg model, which defines 𝐶(𝑡) = 𝑤 +

𝑐𝑡 − ∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1 , where the premiums are assumed to be collected over time at a constant rate 𝑐, 𝑤 denotes the initial insurer’s capital 

and 𝑁(𝑡) is a Poisson process. This method relies on a purely mathematical approach, overlooking insurance dynamics such as 

delayed claims settlement, inflation, portfolio size fluctuations, risk dependencies, investment performance, and capital 

adjustments like dividends. Additionally, modeling the surplus stochastic process with sufficient accuracy to reflect a company’s 

real situation can be extremely complex, introducing significant model uncertainty. This approach also demands extensive data 

and requires input from several departments, further complicating its practical application. These challenges have driven a shift 

toward more practical solvency frameworks, such as those employed in regulatory systems like Solvency II. 

In this approach, a time horizon of one year is considered. Let 𝑍(𝑡) be the available capital at time 𝑡, which corresponds to the 

assets minus the liabilities of an insurance company. To remain solvent, the criterion is to hold sufficient capital according to some 

risk measure 𝜌. Concretely, if 𝐿(1)  =  𝑍(1)  −  𝑍(0) denotes the loss during the upcoming year, then the capital requirement is 

𝜌(𝐿(1)). For Solvency II, the risk measure determining the required capital is the Value-at-Risk at level 99,5%: 𝜌(𝐿(1)) =

𝑉𝑎𝑅99,5(𝐿(1)), which is the 99,5% quantile of the loss distribution over a one-year horizon. In practice, modeling 𝐿(1) is 

complicated since many risks can influence its distribution such as market risk, counterparty risk, insurance risk, etc. Within the 

Solvency II framework, these risks are assessed individually and then aggregated thanks to correlation matrices.  

In the purpose of pricing P&C reinsurance treaties, one can make the simplifying assumption that the loss 𝐿(1) is determined by 

the subtraction of the aggregate reinsurance loss 𝑆(1) and the premium 𝑃(1) received for the respective treaties, i.e. 𝐿(1) =

𝑆(1) − 𝑃(1). This formulation implies a regulatory solvency capital requirement 𝑆𝐶𝑅 =  𝜌(𝐿(1)), which represents the capital 

the reinsurance company must hold to ensure solvency. The SCR is generally funded by the company’s shareholders or external 

investors, who require a return on their investment at a rate 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 , resulting in a cost of 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑆𝐶𝑅 for the reinsurer. 

One can now interpret 𝑃(1) as the sum of the expected claim size 𝔼(𝑆(1)) and a safety loading 𝑆𝐿(𝑆(1)). From a regulatory 

perspective, the safety loading can be interpreted as the amount needed to finance the cost of capital requirement 𝐶𝑜𝐶 =

𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑆𝐶𝑅 . The safety loading in this framework is seen not as a buffer for long-term safety, as in classical ruin theory, but 

as a mechanism to meet regulatory capital requirements. 

This methodology has been adopted for calculating the safety loadings within the technical premium estimation because of its 

consistency with regulatory measures and relative ease of implementation. The methodology selected for calculating safety 

loadings will be detailed in the following sections. However, the methodology differs whether the treaty is pooled within an AXA 

SA pools or not.  
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6.1.1.2.1 Pooled treaties 

For a pooled treaty, the previously defined methodology can be used to calculate the safety loading at the individual level. By 

pooled treaty, we refer to treaties placed within the Marine, Liability, Property and Motor pools, the Cyber pool being only 

composed of QS treaties. 

First, the global cost of capital 𝐶𝑜𝐶 introduced earlier, which will be based on the AXA SA Non-life SCR, is computed. As in the 

Solvency II framework, the Value at Risk will be used as a risk measure to calculate the solvency capital requirement of the pool, 

which will be referred to as the standalone SCR. To calculate the pool standalone SCR, the internally simulated discounted pool 

results are used, and the SCR is obtained through the following formula, which is equivalent to the formula used for calculating 

the SCR in the previous section: 

𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒
𝑃𝑜𝑜𝑙 = 𝔼̂(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑃𝑜𝑜𝑙) − 𝑞̂0.05%(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑃𝑜𝑜𝑙) 

Unfortunately, a direct use of the amount calculated previously would fail to account for various AGCRe specificities, particularly 

the effect of diversification within AXA SA non-life SCR modules, which dilutes each pool capital requirement and as a result 

decreases its cost of capital. To address this, transmission factors have been calibrated within AXA to account for this 

diversification effect. These factors, corresponding to different layers of diversification, can be merged into a single one for each 

pool, denoted as 𝑇𝐹𝑝𝑜𝑜𝑙 →𝐴𝑋𝐴 𝑆𝐴. Furthermore, out of caution, a coverage ratio 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 is considered within the cost 

of capital computation. This coverage ratio is calculated at a global level and defined as the ratio between the capital set aside by 

AXA SA and its SCR. If this ratio is superior to one, AXA SA will set aside more capital than what is actually required to support 

the risk it underwrites through reinsurance treaties, and the pool cost of capital will thus increase. By considering theses 

information, one can compute the pool cost of capital, which will be taken into account in the calculation of the safety loading 

inherent to the treaty. 

𝐶𝑜𝐶𝑝𝑜𝑜𝑙 =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗  𝑇𝐹𝑝𝑜𝑜𝑙 →𝐴𝑋𝐴 𝑆𝐴 ∗  𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒
𝑃𝑜𝑜𝑙  

Once the cost of capital of the pool is computed, let us focus on how one can use the previously defined methodology at the 

aggregate level to deduce an individual safety loading. According to the hypothesis that the safety loading 𝑆𝐿(𝑆) corresponds to 

the 𝐶𝑜𝐶𝑝𝑜𝑜𝑙, the latter can be seen as the sum of the individual safety loadings of the pooled treaties:  

𝐶𝑜𝐶𝑝𝑜𝑜𝑙 = ∑ 𝑆𝐿(𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗)

𝑛𝑃𝑜𝑜𝑙

𝑗=1

 

Where 𝑛𝑝𝑜𝑜𝑙 represents the number of pooled treaties and 𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗 is the recovery distribution of each pooled treaty. 

The goal is thus to allocate a given pool global 𝐶𝑜𝐶 to each treaty making up that pool, leading to express each S𝐿(𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗) as a 

part of 𝐶𝑜𝐶:  

𝑆𝐿 (𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗) =  𝛼𝑗 ∗ 𝐶𝑜𝐶𝑝𝑜𝑜𝑙  

Theoretically, the choice 𝛼𝑗 = 
𝐶𝑜𝑣(𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗 ,

∑ 𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗)
𝑛𝑃𝑜𝑜𝑙
𝑗=1

𝑉𝑎𝑟(∑ 𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗)
𝑛𝑃𝑜𝑜𝑙
𝑗=1

 seems appropriate. However, knowledge about the covariance between 

a new treaty 𝑗 and the aggregate risk is difficult to calibrate within the pricing tool. Within AGCRe, since pooled treaties of a same 

LoB are jointly modeled within the internal model, the coefficient 𝛼𝑗 of a reinsurance treaty 𝑗 is calculated as follows: 

➢ Pool’s results and treaty’s recoveries are simulated using 50,000 simulations 

➢ The 51 scenarios centered on the 250th worst global scenario are retrieved and used to compute the 𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒
𝑃𝑜𝑜𝑙  and 

the pool cost of capital 𝐶𝑜𝐶𝑝𝑜𝑜𝑙 
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➢ Given those 51 identified scenarios, the weight 𝛼𝑗 of each treaty within the pool is equal to the mean recoveries for the 

individual treaty divided by the sum of the mean recoveries over all treaties. By denoting 𝐴 the set of 

51 scenarios centered on the 250th worst global scenario, one has: 𝛼𝑗
𝐴𝐺𝐶𝑅𝑒 = 

∑ 𝑅𝑠
𝑗

𝑠𝜖𝐴

∑ ∑ 𝑅𝑠
𝑘

𝑠𝜖𝐴
𝑛𝑃𝑜𝑜𝑙
𝑘=1

 where 𝑅𝑠
𝑗
 denotes the recovery 

amount of the reinsurance treaty 𝑗 for a scenario 𝑠 

Inspired by the AGCRe methodology, an initial approximation based on the 99,5% quantiles of the pool’s results/treaty’s 

recoveries was implemented: 

𝛼𝑞 = 
𝑞̂99,5%(𝑅)

𝑞̂99,5%(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑃𝑜𝑜𝑙)
 

Where 𝑅 is the recovery distribution of the considered treaty. Unfortunately, it is challenging to incorporate a new treaty into the 

pool while considering its actual impact on the pool’s result since the treaty is independently modeled in the pricing tool. The 

impact of the treaty is thus evaluated without considering its effect, which could lead to a higher rate 𝛼. Furthermore, in this 

approach, the sum of individual 𝑆𝐿 (𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗) is not equal to the pool cost of capital 𝐶𝑜𝐶𝑝𝑜𝑜𝑙. One approach would be to consider 

the fluctuations of each treaty independently, which simplifies the process of adding treaties to the pool and enables the equality 

between the pool cost of capital and the sum of individual safety loadings within the pool. One could thus evaluate the effect on 

the pool in terms of variance or standard deviation, leading to the following values: 

𝛼𝑉𝑎𝑟 =
𝑉𝑎𝑟̂(𝑅)

∑ 𝑉𝑎𝑟̂(𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗)
𝑛𝑃𝑜𝑜𝑙𝑒𝑑
𝑗=1

 

𝛼𝜎 =
𝜎̂(𝑅)

∑ 𝜎̂(𝑅𝑡𝑟𝑒𝑎𝑡𝑦𝑗)
𝑛𝑃𝑜𝑜𝑙𝑒𝑑
𝑗=1

 

The choice to model these coefficients in terms of variance or standard deviation is linked to the variance and standard deviation 

classical premium principles. Indeed, by using such coefficients, one could retrieve the premium principles developed previously. 

However, these methods have disadvantages, one of which being related to the composition of the reinsurance portfolio. In 

practice, the future composition of the reinsurance portfolio is unknown, so the coefficients 𝛼 are calibrated based on the current 

portfolio composition. Furthermore, the assumption of independence between treaties may not always hold, especially when the 

treaties are layers of a reinsurance program. Nevertheless, these methods will be considered for estimating the safety loadings due 

to their alignment with solvency principles and their relative simplicity considering their implementation. 

For information, the figure below presents the value of the coefficients 𝛼 calculated across about forty pooled treaties within 

Liability, Property, and Marine pools. The contribution to the pool is higher when using the quantile method (referred to as SCR 

in the figure). This outcome was predictable, as for this type of treaty, the denominator considers the quantile of the global recovery 

distribution of the pool which results in a relatively lower denominator. Furthermore, 𝛼 decrease for higher layers as top layers 

tend to generate fewer recoveries due to higher retention, meaning the impact of the treaty on the pool variance/standard deviation 

is lower. Therefore, calculation methods based on variance and standard deviation seem preferable. 
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Figure 65: Comparison of safety loadings rates 𝛼 

Once the different values of 𝛼 have been evaluated, the safety loading of the considered treaty is: 

𝑆𝐿(𝑅) =  𝛼 ∗  𝐶𝑜𝐶𝑝𝑜𝑜𝑙 + 𝑅𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝑅)  

With: 𝑅𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝑅) =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝔼(𝑅) ∗ (𝑀𝐼𝑆𝐶𝑅 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 + 𝐷 ∗ 𝑀𝐼𝑆𝐶𝑅 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙) 

Where 𝑀𝐼𝑆𝐶𝑅 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 | 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  denotes the marginal impact on the SCR reserve and operational. This additional risk margin 

aims to account for the impact on the SCR reserve within the Non-Life SCR of AXA SA. 𝐷 represents the duration of the 

considered LoB. 

6.1.1.2.2 Non-Pooled treaties 

Let us now detail the methodology used for non-pooled treaties. The approach differs since it is not possible to simulate all 

reinsurance treaties underwritten by AXA SA. Instead, a Solvency II-based approach is employed, focusing on evaluating the 

marginal impact of the treaty on AXA SA's Non-Life SCR. Solvency II is a prudential regime for European insurers and reinsurers 

which came into force in 2016. It aims to ensure that companies' capital levels are adequate for the risks they face. Through one 

of its pillars, Solvency II defines a capital indicator known as the SCR (Solvency Capital Requirement), which corresponds to the 

level of capital required to limit the probability of ruin over a 1-year horizon to 0.5%. In other words, the SCR represents the 

capital necessary to absorb the shock of a catastrophic event expected to occur once every 200 years. Mathematically, the SCR is 

modeled as the 99.5% Value-at-Risk of the loss distribution. Since the global distribution of losses is difficult to model, the SCR 

is calculated through the aggregation of various risk modules. The table below details the different risk modules involved in the 

calculation of the SCR. 
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Figure 66: SCR risk modules 

In this project, we focus exclusively on the non-life SCR, which consists of three sub-modules: premium/reserve, lapse, and CAT. 

However, the lapse SCR is not considered in this project. Concerning the risk for premium and reserve, it is calculated as follows 

according to the Solvency II standard formula: 

𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚 |𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = 3 ∗ 𝐶𝑜𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 | 𝑟𝑒𝑠𝑒𝑟𝑣𝑒  ∗ 𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 |𝑟𝑒𝑠𝑒𝑟𝑣𝑒 

Where: 

• 𝐶𝑜𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 |𝑟𝑒𝑠𝑒𝑟𝑣𝑒  represents the covariance of premium and reserve risk, which are calibrated and given by the 

Solvency II framework. For non-proportional treaties, the value of the 𝐶𝑜𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 (respectively 𝐶𝑜𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒) is set at 0,17 

(respectively 0,2) for every LoB. 

• 𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 |𝑟𝑒𝑠𝑒𝑟𝑣𝑒  represents the volume measure for premium and reserve risk in non-life insurance. Let us consider a 

non-proportional treaty, with the recovery distribution 𝑅. For the treaty under consideration, this volume will be 

approximated by 𝔼(𝑅) for the premium SCR and by 𝔼(𝑅) ∗ max(1, 𝐷 − 1) for the reserve SCR where 𝐷 represents the 

duration for the considered Line of Business calibrated internally.  

This formula for the premium/reserve SCR has been established within the Solvency II framework as it provides a good 

approximation of the reserve and premium risks when the net result follows a Log-Normal distribution. 

Concerning the capital requirement for the CAT module, it is set to 0 since CAT treaties are not considered in this work. One could 

now derive a vector corresponding to the standalone SCR of the treaty for each module of the non-life SCR: 

𝑆𝐶𝑅𝑡𝑟𝑒𝑎𝑡𝑦 = (

𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑆𝐶𝑅𝐶𝐴𝑇

) = (
3 ∗ 𝐶𝑜𝑉𝑝𝑟𝑒𝑚𝑖𝑢𝑚 ∗ 𝔼(𝑅)

3 ∗ 𝐶𝑜𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ∗ 𝔼(𝑅) ∗ max(1, 𝐷𝑟𝑒𝑠𝑒𝑟𝑣𝑒 − 1)
0

) 

One needs to account for the diversification effect within AXA SA's underwritten reinsurance portfolio. To do so, a diversification 

matrix calibrated by the Risk Management team is used. This matrix, denoted as Σ𝑐𝑒𝑑𝑒𝑛𝑡,   𝐴𝑋𝐴 𝑆𝐴  is a 2x2 matrix with the following 

structure: 

Table 38: Diversification matrix 

 Cedent AXA SA 

Cedent 1 0,5 

AXA SA 0,5 1 
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The SCR accounting for the impact of the treaty underwriting is thus: 

𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒
𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦

=

(

  
 
√(𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚

𝑡𝑟𝑒𝑎𝑡𝑦
 𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚

𝐴𝑋𝐴 𝑆𝐴 ) ∗ Σ𝐴𝐺𝐶𝑅𝑒,   𝐴𝑋𝐴 𝑆𝐴 ∗ (𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝑡𝑟𝑒𝑎𝑡𝑦

 𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝐴𝑋𝐴 𝑆𝐴 )

𝑇

√(𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑡𝑟𝑒𝑎𝑡𝑦

 𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝐴𝑋𝐴 𝑆𝐴 ) ∗ Σ𝐴𝐺𝐶𝑅𝑒,   𝐴𝑋𝐴 𝑆𝐴 ∗ (𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑡𝑟𝑒𝑎𝑡𝑦
 𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝐴𝑋𝐴 𝑆𝐴 )
𝑇

𝑆𝐶𝑅𝐶𝐴𝑇
𝐴𝑋𝐴 𝑆𝐴 )

  
 

 

The following step will enable us to account for the diversification between the SCR modules using the following correlation 

matrix: 

Σ𝑆𝐶𝑅 𝑃&𝐶 = ( 
1 0.5 0.1
0.5 1 0
0.1 0 1

) 

The calculation of the SCR, considering the underwriting of the treaty, is then given by the following formula:  

𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 = √(𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒
𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦

)
𝑇
∗ Σ𝑆𝐶𝑅 𝑃&𝐶 ∗ (𝑆𝐶𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒

𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦
) 

To quantify the treaty underwriting final impact on AXA SA's Non-Life SCR, one also needs to calculate the current SCR, i.e., 

the SCR without the underwriting of the treaty. It can be expressed as: 

𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦 = √(

𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝐴𝑋𝐴 𝑆𝐴

𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝐴𝑋𝐴 𝑆𝐴

𝑆𝐶𝑅𝐶𝐴𝑇
𝐴𝑋𝐴 𝑆𝐴

)

𝑇

∗ Σ𝑆𝐶𝑅 𝑃&𝐶 ∗ (

𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝐴𝑋𝐴 𝑆𝐴

𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝐴𝑋𝐴 𝑆𝐴

𝑆𝐶𝑅𝐶𝐴𝑇
𝐴𝑋𝐴 𝑆𝐴

) 

The subtraction of 𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦 from 𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 gives the marginal impact of the treaty on AXA SA’s global 

P&C diversified required capital. In accordance with the methodology used for pooled treaties, the safety loading for a non-pooled 

treaty can be defined as follows: 

𝑆𝐿(𝑅) =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ (𝑆𝐶𝑅
𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 −  𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦) + 𝑅𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝑅) 

Where 𝑅𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝑅) =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝔼(𝑅) ∗ 𝐷 ∗ 𝑀𝐼𝑆𝐶𝑅 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  in order to consider the effect on 

the operational SCR. 

The following table displays the amounts of safety loadings obtained for the distributions calibrated for the XL treaty number 1. 

Since this treaty is not pooled, the previously detailed method was applied. Mathematically, the safety loading amount is linked 

to the expected recoveries of the treaty. As such, their evolution is consistent here - higher expected recoveries naturally result in 

a higher safety loading.  

Table 39: Comparison of safety loadings – XL treaty number 1 

Distributions 𝔼(𝑹) 𝑴𝑰1 𝑺𝑳(𝑹) 

GAUSSIAN_KERNEL 116 678 € 36 367 € 43 178 € 

ME_GPD 113 154 € 35 267 € 41 873 € 

ME_PARETO 118 070 € 36 801 € 43 694 € 

GAMMA_MME 69 744 € 21 729 € 25 800 € 

 

 
1 𝑀𝐼 =  𝑐𝑣𝑟𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑟𝑐𝑜𝑐 ∗ (𝑆𝐶𝑅

𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 −  𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦) 
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The only remaining component to obtain the technical premium is the reinstatement factor, which accounts for the reinstatement 

premium. The reinstatement factor is a rate that measures the reinstatement premium paid by the cedent to the reinsurer for the 

restoration of the treaty’s capacity. It is defined as: 

𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 =  𝔼( ∑ 𝑟𝑎𝑡𝑒𝑟𝑒𝑐,𝑘 ∗ max(0, 1 + min(
𝑅

𝐿
− 𝑘, 0))

𝑛𝑏𝑟𝑒𝑐

𝑘=1

 ) 

For example, let us consider an annual recovery amount of 𝑅 = 250 𝑀€. The treaty’s limit is set to 𝐿 = 100 𝑀€ and the treaty 

has 2@100%, 1@50% reinstatements. Then, the reinstatement factor is: 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 = 100% ∗ 1 +  100% ∗ 1 + 50% ∗ 0,5 =

2,25. It means that the cedent will have to pay 2,25 times the technical premium to restore the treaty’s capacity.  

The reinstatement factor can be evaluated based on the recovery distribution (𝑅𝑖)1≤𝑖≤𝑁𝑠𝑖𝑚𝑢𝑙 obtained through Monte Carlo 

simulations. In this context, no time considerations are included in the reinstatement premium calculation since AXA treaties do 

not include a temporal clause for reinstatement premiums. The table below details the reinstatement factor of each distribution. 

The more the treaty's capacity will be consumed, the higher the reinstatement factor. This, in turn, will mechanically reduce the 

final technical premium.  

Table 40: Reinstatement factor – XL treaty number 1 

Distributions 𝔼(𝑹) 𝑹𝒆𝒊𝒏𝒔𝒕𝒇𝒂𝒄𝒕𝒐𝒓 

GAUSSIAN_KERNEL 116 678 € 7,78 % 

ME_GPD 113 154 € 7,57 % 

ME_PARETO 118 070 € 7,80 % 

GAMMA_MME 69 744 € 4,66 % 

 

Finally, one can obtain the technical premium. The table below presents the technical premium amounts calculated for the treaty 

under study. 

Table 41: Technical premium – XL treaty number 1 

Distributions 𝑻𝑷 

GAUSSIAN_KERNEL 216 899 € 

ME_GPD 212 455 € 

ME_PARETO 218 776 € 

GAMMA_MME 156 762 € 

 

The ME-Pareto distribution is the one that yields the highest technical premium. However, one can note that the first three 

distributions provide relatively close technical premium amounts, which may confirm our valid estimation. As expected, the 

gamma distribution forecasts a lower technical premium, which was anticipated given the thinner tail of the fitted gamma 

distribution. 

As a point of reference, the technical premiums obtained using the classical premium principles have also been computed. The 

following figure presents a heatmap of the computed technical premiums. This graph is intended to provide an overview of the 

different technical premiums calibrated according to cost of capital/classical premium principles, for several ranked statistical 

models. The amounts obtained with classical premium principles are not yet highly relevant, as the parameters for each premium 

have not been calibrated. Since the coefficients values have been arbitrarily defined, they seem consequently poorly selected here 

except perhaps for the standard deviation, where the premium returned is close to the technical premium calculated using the cost 

of capital approach.  
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Figure 67: Technical premium heatmap – XL treaty number 1 

To check if our model is consistent, it could be interesting to compare the calculated premium amounts with the market premium, 

if available. For the treaty under study, the market premium is 235 000 €. Thus, just like the premium amounts, a heatmap of the 

relative differences compared to the market premium could be provided, as shown in the following figure. In this figure, focusing 

on the first column, the technical premium is slightly lower than the market premium, with a deviation of less than 10% for the 

first three distributions. The market premium here serves as a reference to check if the treaty is appropriately priced, thus evaluating 

the robustness of the method, which seems to be the case here. However, one can observe a slight error in the ranking of the 

distributions, with the Pareto distribution being the one that most closely matches the actual treaty premium. This highlights the 

need to fit different statistical distributions to have several points of comparison in the calculation of the technical premium. 
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Figure 68: Technical premium comparison with market premium heatmap – XL treaty number 1 

An interesting graphical approach to determine if the treaty is properly evaluated when no market premium is available would be 

to examine the position of the treaty within the LoB. To do so, the priced treaty is displayed along a normalized three-dimensional 

axis: (𝑅𝑒𝑠𝑒𝑟𝑣𝑒;  𝐿𝑖𝑚𝑖𝑡;  𝑇𝑃). The expected premium income of each cedent within the Lob will be used for normalization. One 

can eventually generate a scatter plot with every treaty within the LoB. By adding the priced treaty, one can visualize where the 

priced treaty lies within the LoB. If the pricing methodology is relevant, the point corresponding to the priced treaty should be 

close to the other points. Otherwise, it would suggest that our methodology produces an aberrant technical premium for this treaty. 

For the considered treaty, the treaties within the LoB are represented in blue in the following figure, the remaining points 

corresponding to the priced treaty. This figure suggests that the XL treaty seems to be well-priced, as the points are relatively close 

to the blue scatter plot.   
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Figure 69: Technical premium within the LoB – XL treaty number 1 

This graph can also be visualized in terms of surface, where the LoB surface is represented using interpolation techniques. It can 

be useful when the normalized values of the limit and retention are sparse, as it allows us to estimate a LoB reference in those 

areas. The treaty should therefore be close to the surface in order to be properly priced.  

 

Figure 70: Technical premium and LoB surface – XL treaty number 1 

These graphs can therefore be inspected for estimating whether the computed technical premium is aberrant or not. Let us now 

describe the risk indicators that have been retained. 

6.1.2 Other indicators 

Beyond the technical premium, other indicators can be of interest to properly quantify the risk and profitability of an underwritten 

treaty. These indicators are based on the distribution of recoveries obtained through Monte Carlo simulations. Let us describe the 

different indicators computed in this actuarial work. 
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6.1.2.1 SCR 

The first indicator relates to what could be improperly called the treaty SCR. Mathematically, it can be expressed as: 

𝑞99.5%(𝑅) − 𝔼(𝑅). This indicator helps assessing the reinsurer’s extreme possible loss amounts. The following table exhibits the 

treaty SCR for XL treaty number 1. 

Table 42: Treaty SCR – XL treaty number 1 

Distributions 𝒒𝟗𝟗.𝟓%(𝑹) − 𝔼(𝑹) 

GAUSSIAN_KERNEL 1 223 323 € 

ME_GPD 1 348 134 € 

ME_PARETO 1 438 635 € 

GAMMA_MME 906 958 € 

 

Regarding it, the ME-Pareto distribution has the highest treaty SCR, indicating that it could potentially generate the largest amount 

of losses, followed by the ME-GPD and the Gaussian Kernel distributions while the Gamma distribution has the lowest treaty 

SCR. These results are relatively consistent with the technical premium amounts calibrated. However, it is worth noting that the 

technical premium obtained with the Gaussian Kernel is higher than the one calculated with the ME-GPD, even though the latter 

has a higher SCR. This discrepancy arises because the technical premium considers only the mean of recoveries. This underscores 

the importance of calculating the treaty SCR as an indicator to gain insight into potential extreme loss amounts. 

6.1.2.2 Exceedance probabilities 

Exceedance Probabilities describe the probability that the annual recoveries exceed a threshold 𝑥. In this project, three exceedance 

probabilities have been considered: 

• The attachment probability: This probability represents the likelihood of attachment, i.e., the probability that the annual 

recovery amount is non-zero. In other words, it is the probability that the reinsurer must indemnify the ceding company 

for claims. Mathematically, it corresponds to ℙ(𝑅 > 0), where 𝑅 denotes the recovery amount. This probability can be 

calculated empirically using the modeled distribution of recoveries. 

• The exhaustion probability: This probability represents the likelihood that the treaty's capacity is fully exhausted, 

disregarding reinstatements. It is particularly useful in cases where there are multiple reinstatements, as it provides the 

likelihood of replenishing the treaty's capacity. Mathematically, it corresponds to ℙ(𝑅 > 𝐿), where 𝐿 is the treaty's limit. 

• The break-even probability: This probability measures the likelihood that the reinsurance premium alone fails to cover 

the ceded losses. In this work, it corresponds to ℙ(𝑅 > 𝑇𝑃) where 𝑇𝑃 is the technical premium. 

These probabilities have been calibrated to serve as clear risk indicators, reflecting among other things the impact of retention and 

limit. Indeed, they can be used to compare treaties covering the same cedent and risk but with varying limits and retentions, 

especially for attachment and exhaustion probabilities. 

The figure below illustrates the exceedance probabilities for the treaty analyzed in this study. 



p. 131 

 

 

Figure 71: Exceedance probabilities – XL treaty number 1 

The probabilities observed are relatively close, hovering around 30%. This indicates a 30% chance that the treaty's capacity will 

be consumed within a year. Regarding the exhaustion probabilities, these are extremely low. This aligns with the previously 

calculated VaR amounts, considering that the treaty's limit is set at 1.5 million. The likelihood of the capacity being fully exhausted 

is thus minimal. As for the break-even probability, it is approximately 15% across all treaties, with slightly higher values for the 

Pareto and GPD distributions, due to their heavier tails compared to the other two distributions. These tails increase the probability 

of extreme recoveries, which impacts the break-even probability. 

6.1.2.3 Return periods 

A Return Period is another way to express the annual exceedance probability and describes the estimated likelihood of a specific 

loss occurring within a given time frame. For example, a 50-year return period means that, on average, a given event or scenario 

is expected to occur once within a period of 50 years. The relationship between exceedance probability 𝐸𝑃 and return period 𝑅𝑃 

is: 

𝑅𝑃 = 
1

𝐸𝑃
 

These indicators have been calibrated to provide an alternative representation of exceedance probabilities. The table below 

presents the return periods of the treaty under consideration. 

Table 43: Exceedance return periods (in years) – XL treaty number 1 

Distributions Attachment Return 

Period 

Exhaustion Return 

Period 

Break-even Return 

Period 

GAUSSIAN_KERNEL 2,99 333,33 6,38 

ME_GPD 3,13 312,50 5,85 

ME_PARETO 3,28 158,73 6,23 

GAMMA_MME 3,52 2000,00 6,54 

 

Regarding the return periods for the Gaussian Kernel distribution, a positive recovery amount occurs on average once every 3 

years, while the technical premium fails to cover all recoveries once every 6 years and 5 months on average. This can be compared 

to the ME-GPD distribution, where claims are less likely to generate recoveries. However, they can lead to higher amounts, as the 

return period is longer for the ME-GPD compared to the Gaussian Kernel. 
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Another interesting point is to consider the amounts associated with specific return periods (e.g., the recovery amount associated 

with a 50-year return period). Mathematically, for a return period 𝑥, this corresponds to the quantile 𝑞
1−
1

𝑥

(𝑅) of the recovery 

distribution. The following figure presents the amounts obtained for return periods of 10, 20, 100, and 200 years. 

 

Figure 72: Recovery amounts for fixed return periods – XL treaty number 1 

This graph clearly highlights the heavier tail of the Pareto distribution, which generates the highest recovery amounts for a 200-

year return period, and the Gamma distribution, which has a much thinner tail. The ME-Pareto distribution is thus the distribution 

that generates the most severe extreme loss amounts. 

6.1.2.4 Loss ratio 

One can also be interested in looking at the treaty loss ratio. The loss ratio is generally defined as follows for a non-proportional 

treaty: 

𝐿𝑅 =  
𝔼(𝑅)

(1 + 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 𝑇𝑃
 

Within AGCRe, the loss ratio was calibrated as follows: 

𝐿𝑅 =  
𝔼(𝑅) − 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑇𝑃

𝑇𝑃
 

This change arises from the fact that the quantity 𝑅𝑒𝑖𝑛𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑇𝑃, which corresponds to the reinstatement premium, is perceived 

as a loss reduction rather than a premium gain. Within the tool, the loss ratio has been calibrated accordingly to remain consistent 

with AGCRe's practices.  

The table below presents the loss ratios calibrated for the treaty under study. 
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Table 44: Loss Ratios – XL treaty number 1 

Distributions 𝑳𝑹 

GAUSSIAN_KERNEL 46,01% 

ME_GPD 45,69% 

ME_PARETO 46,17% 

GAMMA_MME 39,83% 

 

The treaty is therefore profitable in our case, with an average loss ratio of approximately 46% for the three most suitable 

distributions. 

6.1.2.5 ERD  

A final useful indicator concerning the treaty is the Expected Reinsurer Deficit (ERD). It is generally defined as: 

𝐸𝑅𝐷 = 𝑝 ∗
𝑇

𝑃
 

Where 𝑝 is the probability of net income loss, 𝑇 is the average of net economic loss when it occurs, and 𝑃 the expected premium. 

In this project, the ERD can be written as follows:  

𝐸𝑅𝐷 =  𝑃(𝑅 > 𝑇𝑃) ∗  
𝔼(𝑅 − 𝑇𝑃 |𝑅 > 𝑇𝑃)

𝑇𝑃
 

The ERD is derived from the break-even probability. It is a method for testing reinsurance contracts to determine whether there is 

actual risk transfer. The ERD is an important indicator from a regulatory standpoint, as the ERD must be greater than 1% for the 

treaty to be considered as involving an actual risk transfer. 

The table below presents the ERD values for the treaty under study. 

Table 45: ERD – XL treaty number 1 

Distributions 𝔼(𝑹 | 𝑹 > 𝑻𝑷) ERD 

GAUSSIAN_KERNEL 351 007 € 9,69% 

ME_GPD 332 617 € 9,66% 

ME_PARETO 433 268 € 15,74% 

GAMMA_MME 211 624 € 5,35% 

 

The highest ERD is obtained with the ME-Pareto distribution, and the lowest with the Gamma distribution. Modeling claims using 

the Pareto distribution is thus more pessimistic from the reinsurer’s point of view as it represents "riskier" underwritten reinsured 

risk. This is primarily due to the heavier tail of the Pareto distribution. In all cases, there is indeed a transfer of risk, and the treaties 

can be considered as valid reinsurance treaties.  

6.1.2.6 ECR and RoC 

One can also look at the Economic Combined Ratio (ECR). It evaluates the effectiveness of reinsurance by comparing incurred 

losses and expenses to premiums. Specifically, it is calculated by dividing the expected present value of losses, expenses, tax 

effects and cost of capital by the premium present value: 

𝐸𝐶𝑅 =  
𝔼(𝑃𝑉(𝑅 + 𝐴𝐸 + 𝑇𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝐶𝑜𝐶))

𝑃𝑉(𝑃𝑟𝑒𝑚𝑖𝑢𝑚)
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An economic combined ratio below 100% signifies that the reinsurer is operating profitably, whereas a ratio above 100% indicates 

the reinsurer is operating at a loss. Within AGCRe, the ECR is calculated as the ratio between the technical and the market premium 

since the technical premium is designed to cover losses, expenses, tax effects and cost of capital associated with the reinsurance 

treaty. However, within the tool, the 𝐸𝐶𝑅 is set to one since no market premium is available. As a result, the reinsurer is left in a 

neutral financial position - neither incurring a loss nor generating a profit. Consequently, the ECR is not a relevant metric for 

evaluating the treaty’s profitability in this project. 

Finally, the “ceded” return on capital is also one of the indicators assessed during underwriting committees at AGCRe. It represents 

the expected return on the treaty underwriting, reflecting the financial outcome of immobilizing a certain capital 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑  to bear the risk resulting from the treaty underwriting. Its definition is thus: 

𝑅𝑜𝐶𝑐𝑒𝑑𝑒𝑑 =
𝔼(𝑁𝑒𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑
 

However, within AGCRe, the net result of the treaty is based on the market premium which is not available in the pricing tool. 

Indeed, using the technical premium to compute the reinsurer’s net result would be inconsistent since its calculation was designed 

to cover, among other things, the treaty cost of capital using the return on capital. Thus, the 𝑅𝑜𝐶𝑐𝑒𝑑𝑒𝑑  is not a relevant indicator 

for non-proportional treaties since the market premium is not available.  

 

To sum up, these different indicators detailed in this part offer a more precise evaluation than just the technical premium alone, 

especially with respect to the tail of the distribution and extreme events, which are particularly impactful for non-proportional 

reinsurance treaties. The following figure details the pricing process for non-proportional treaties, defined as “P15” in Figure 64. 
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Figure 73: Pricing process – non-proportional treaties
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6.2   Proportional treaties 

Let us now consider proportional treaties. Due to their different nature, proportional treaties do not require premium calculation. 

For the evaluation of these treaties, the focus will be on comparing the margins and results obtained by the reinsurer when 

underwriting the treaty, along with the treaty cost of capital, using the theoretical elements developed in the previous section.  

6.2.1 Results and margins 

Let 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 denote the premium acquired by the reinsurer, i.e., the ceded premium. We remind below the indicators that 

are calculated based on the simulations made in part 5.3.2.1: 

• The expected gross loss ratio i.e., the cedent’s loss ratio: 𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡) 

• The expected cedent’s loss: 𝔼(𝑆𝑐𝑒𝑑𝑒𝑛𝑡) = 𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡) ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑  

• The expected reinsurer’s loss ratio (net of loss corridor effect): 𝔼(𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 

• The expected ceded loss (net of loss corridor effect): 𝔼(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 

• The expected ceding commission: 𝔼(𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛) 

• The expected reinsurer’s loss and loss ratio (including commission and expenses): 

𝔼(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)) and 𝔼(𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑖𝑛𝑐𝑙.  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠)) 

• The expected experience account: 𝔼(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡) 

• The expected profit sharing: 𝔼(𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔) 

• The expected reinsurer’s net loss and loss ratio (un)discounted: 𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) and 

𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)), with 𝔼(𝑁𝑒𝑡 𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) and 𝔼(𝑁𝑒𝑡 𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 

Additionally, based on the previous quantities, one can get the (un)discounted reinsurer’s net result using the following formula: 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) =  𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 − 𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) =  𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 − 𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 

One can add regulatory conditions by incorporating taxes. The formula becomes:  

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

) = 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) − 𝑇𝑎𝑥 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

) = 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) − 𝑇𝑎𝑥 

In this project, the 𝑇𝑎𝑥 quantity is calculated as follows: 

𝑇𝑎𝑥 = 𝑟𝑖𝑛𝑐𝑜𝑚𝑒 𝑡𝑎𝑥 ∗ 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 ((𝑢𝑛)𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) + 𝑂𝑡ℎ𝑒𝑟 𝑇𝑎𝑥𝑒𝑠 

The 𝑟𝑖𝑛𝑐𝑜𝑚𝑒 𝑡𝑎𝑥 corresponds to the tax rates that applies on the reinsurer’s benefits (tax on companies, CVAE, etc), while the other 

taxes are composed of the C3S tax and other ACPR fees that apply to the ceded premium. 

Let us consider the following treaty: a QS treaty with a 60% cession rate, leading to a ceded premium of 1 million euros. Let us 

assume the following distribution of simulated cedent’s loss ratios derived from a log-normal distribution: 
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Figure 74: Distribution of cedents’s loss ratios 

The Quota Share treaty also has the following conditions: 

• Commission Rate: A fixed commission of 15% is paid to the ceding company. 

• Loss Corridor: A loss corridor is applied between 100% and 120%.  

The figure below represents the distribution of the reinsurer's loss ratios. A +15% translation from the cedent's loss ratio is 

noticeable due to the fixed commission. The effect of the loss corridor is also apparent, with a higher number of loss ratios around 

115% for the reinsurer, which corresponds to the range of cedent’s loss ratios between 110% and 120%. This effect is clearly 

beneficial for the reinsurer, as it prevents the reinsurer from assuming excessive losses and thus diminishes the variance of its 

result. 

 

Figure 75: Comparison of cedent’s LR and reinsurer’s net LR 

The table below summarizes some of the previously described quantities: 
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Table 46: Indicators for proportional treaties – Example 

Quantity Value 

𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡) 81,36 % 

𝔼(𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 79,11 % 

𝔼(𝑟𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛) 15 % 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 45 877 € 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 61 005 € 

𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

) 48 356 € 

6.2.2 Cost of capital  

In the same way as for non-proportional treaties, one can evaluate the treaty cost of capital and the impacts on AXA's SCR. To do 

so, the methodology used for non-proportional treaties will be applied, with a few differences. 

First, it is necessary to calculate the 𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚 of the treaty:  

𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 𝔼̂(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) − 𝑞̂0.05%(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)) 

For the previously considered quota share, 𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚 =  278 186 € 

Now, one needs to calculate the 𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒 of the treaty. To do so, let 𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡) be the expected value of the cedent’s loss ratio 

simulated, 𝑃𝑃𝑐𝑢𝑚 = (𝑃𝑃𝑐𝑢𝑚𝑗)1 ≤ 𝑗 ≤ 30
the cumulated payment pattern calibrated for the corresponding quota share and 

𝑟𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑒𝑠𝑒𝑟𝑣𝑒1 the stress rate for reserves. The cumulated ultimate stressed loss ratio over time is: 

𝐿𝑅𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑐𝑒𝑑𝑒𝑛𝑡 = (𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡)  + 𝑟𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ∗  𝔼(𝐿𝑅

𝑐𝑒𝑑𝑒𝑛𝑡)  ∗ (1 − 𝑃𝑃𝑐𝑢𝑚𝑗))
1 ≤ 𝑗 ≤ 30

∈ ℝ30 

This vector represents the evolution of the ultimate loss ratio, with a reserve surplus which initially increases the loss ratio. Towards 

the end, the stressed loss ratio is equal to 𝔼(𝐿𝑅𝑐𝑒𝑑𝑒𝑛𝑡). 

Once this vector has been measured, the treaty terms and conditions are applied on 𝐿𝑅𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑
𝑐𝑒𝑑𝑒𝑛𝑡  to obtain the reinsurer's stressed 

loss ratio: 𝑁𝑒𝑡 𝐿𝑅𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

∈ ℝ30 The calculations are similar to the ones developed in the section 5.3.2.1. Finally, to 

obtain the 𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒 , one can apply the following calculation, which corresponds to the marginal impact of a reserve amounts 

increase: 

𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒 =∑((𝑁𝑒𝑡 𝐿𝑅𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

)
𝑗
− (𝑁𝑒𝑡 𝐿𝑅𝑖,𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 )
𝑗
)

30

𝑗=1

 

For the considered treaty, 𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒 = 640 115 €. Unlike the SCR for premiums, the SCR for reserves is sensitive to the payment 

pattern: the more the payments are spread over time, the higher the SCR will be. 

These quantities are then aggregated into a single vector of solvency capital requirement standalone named 𝑆𝐶𝑅𝑡𝑟𝑒𝑎𝑡𝑦: 

𝑆𝐶𝑅𝑡𝑟𝑒𝑎𝑡𝑦 = (
𝑆𝐶𝑅𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝑆𝐶𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒

0

) 

 
1 The reserve stress rate is fixed at 32 % based on Risk Management recommendations.  
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We find ourselves in the same situation as in the non-pooled treaty section (see 6.1.1.2.2), and the same quantities can be 

calculated, namely 𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦and 𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦 from which the treaty cost of capital can be derived: 

𝐶𝑜𝐶𝑡𝑟𝑒𝑎𝑡𝑦 =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ (𝑆𝐶𝑅
𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 −  𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦) 

In our case, the treaty cost of capital is 26 821 €, with an impact on AXA P&C's overall SCR of 319 305 €. This final cost of 

capital can then be compared to the final margin 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

): if the cost of capital is greater than the 

reinsurer's margin, the treaty is not profitable. 

Using the cost of capital, one can also compute the return on capital defined with the following formula for proportional treaties: 

𝑅𝑜𝐶𝑐𝑒𝑑𝑒𝑑 =
𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑
=
𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 (𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑))

𝐶𝑜𝐶𝑡𝑟𝑒𝑎𝑡𝑦
𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡

  

In our case, the 𝑅𝑜𝐶𝑐𝑒𝑑𝑒𝑑  is 13,65%. 

Moreover, in the same way as for non-proportional treaties, the ERD and the ECR can also be measured. In our case, the ERD is 

2.83%, with a probability of having a negative result of about 33% while the ECR is 97,85%. The low value of the ERD can be 

explained by the presence of the loss corridor, which in our case helps to limit extreme losses and thus makes the ERD lower. The 

ECR being inferior to 100%, the treaty is thus profitable. 

The table below displays a summary of the various indicators calculated during the assessment of a proportional reinsurance treaty 

in this actuarial work. The amounts can be converted to rate by dividing them with the ceded premium. 

Table 47: Overview of proportional treaty indicators 

Name Formula 

Ceded Premium 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 = 𝑐 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠𝑢𝑏𝑗𝑒𝑐𝑡 for QS treaties 

Ceded Losses 𝔼(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = 𝔼(𝑓𝑙𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟(𝐿𝑅
𝑐𝑒𝑑𝑒𝑛𝑡) ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑) for QS treaties 

Ceding Commission 
𝔼(𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = {

𝑟𝐶𝐹 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑

𝔼(𝑟𝐶𝑆𝑆(𝐿𝑅
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟1)) ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑

 

Expenses 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝑟𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 

Experience Account 𝔼(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡) = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 − 𝔼(𝑆
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) − 𝔼(𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛) − 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 − 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 ∗ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 

Profit Sharing 𝔼(𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔) = 𝑟𝑝𝑟𝑜𝑓𝑖𝑡 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 ∗ 𝔼((𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡)+) 

Net Loss (reinsurer) 𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = 𝔼(𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) + 𝔼(𝐶𝑒𝑑𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛) + 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 + 𝔼(𝑃𝑟𝑜𝑓𝑖𝑡 𝑆ℎ𝑎𝑟𝑖𝑛𝑔) 

Net Result (reinsurer) 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 − 𝔼(𝑁𝑒𝑡 𝐿𝑜𝑠𝑠
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) 

Net Result post tax (reinsurer) 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) = 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) − 𝑇𝑎𝑥 

Cost of Capital (treaty) 𝐶𝑜𝐶𝑡𝑟𝑒𝑎𝑡𝑦 =  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝐴𝑋𝐴 𝑆𝐴 ∗ 𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗ (𝑆𝐶𝑅
𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑦 −  𝑆𝐶𝑅𝐴𝑋𝐴 𝑆𝐴 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑟𝑒𝑎𝑡𝑦) 

Return on Capital 
𝑅𝑜𝐶𝑐𝑒𝑑𝑒𝑑 =

𝔼(𝑁𝑒𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟)

𝐶𝑜𝐶𝑡𝑟𝑒𝑎𝑡𝑦
𝑅𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡

 

ERD 
𝐸𝑅𝐷 =  ℙ(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 > 0) ∗  
𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 |𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥
𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 > 0)

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑
 

ECR 
𝐸𝐶𝑅 = 

𝔼(𝑃𝑉(𝑅 + 𝐴𝐸 + 𝑇𝑎𝑥 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝐶𝑜𝐶))

𝑃𝑉(𝑃𝑟𝑒𝑚𝑖𝑢𝑚)
=
𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑 − 𝔼(𝑁𝑒𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑜𝑠𝑡 𝑡𝑎𝑥

𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟) + 𝐶𝑜𝐶𝑡𝑟𝑒𝑎𝑡𝑦
𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑

 

 

To conclude, this section has detailed the computation of risk and profitability indicators. These indicators, derived from simulated 

loss distributions, enable the Analytics and Pricing team to evaluate its reinsurance treaties for future underwriting decisions. The 

use of Monte Carlo simulations has proven to be an effective choice, as it allows for the calculation of treaty indicators for both 

 
1 𝐿𝑅𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟 =

𝑆𝑟𝑒𝑖𝑛𝑠𝑢𝑟𝑒𝑟

𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑐𝑒𝑑𝑒𝑑
 



p. 140 

 

proportional and non-proportional treaties. The indicators displayed within the pricing tool are not exhaustive: they were chosen 

in collaboration with the team to identify those most relevant beyond traditional metrics based solely on loss distribution. This 

section could be further expanded with additional indicators and serves as an initial step, concluding the description of the 

methodology that forms the foundation for the tool's development. This has also enabled us to respond part of the problem, which 

was to develop a centralized approach for evaluating treaties by producing risk and profitability indicators for all types of treaties. 

Furthermore, the following figure details the pricing process for proportional treaties, defined as “P16” in Figure 64. 
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Figure 76: Pricing process – proportional treaties
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7. Comparison with market premiums 

To assess the results of our modeling approach, we will focus on the study of XL per risk treaties, which make up a large portion 

of AGCRe's portfolio, being also the type of treaties for which the data is the most reliable. One way to evaluate our pricing 

methodology is to compare the modeled technical premium with market premiums. This allows us to evaluate whether the 

developed methodology provides a reliable estimate of the technical premium. To do this, the technical premium obtained for both 

pooled and non-pooled treaties will be considered. Furthermore, only the frequency-severity cost modeling approach was used 

here, as it enables assessing more treaties. 

7.1 Pooled treaties 

In the case of pooled treaties, 30 treaties were selected from the marine, liability and property pools for which market premiums 

and enough historical claims (>150) are available. These treaties are part of about twenty different reinsurance programs. 

The technical premiums were computed using 50 000 simulations for each treaty. The three methodologies for calculating safety 

loadings were applied (see 6.1.1.2.1). The technical premium amounts were then compared through linear regression, regressing 

the technical premiums against the market premium. The following figure presents the results of this analysis, showing the 

technical premiums calculated for the frequency and severity distribution with the highest range based on the established ranking 

methodology. 

 

Figure 77: Comparison with market premium – Pooled treaties 

The technical premiums calculated with a “variance” safety loading seems close to those based on a “standard error” safety 

loading, while the technical premium measured using the quantile method (referred to as SCR in the figure) is higher. This was 

expected, as the previously plotted graph showed that the safety loading coefficients were higher for the quantile method. The 

predicted amounts from the variance and standard deviation methodologies are also close to each other, which was also anticipated. 

Furthermore, the regression lines for each of the methodologies are close to the theoretical line, which corresponds is the line with 

a linear coefficient equal to 1. Indeed, the coefficients of the regression line are around 0.95 for variance and standard deviation 

methods, while for the quantile method, the coefficient is around 1.05. The average difference between the calculated technical 

premiums and market premiums is around +/- 5%, which indicates a comforting estimation of the technical premium. Additionally, 

the 𝑅² coefficients of the regression are above 98%, and the regression coefficients are statistically significant at the 5% level, 
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confirming the relatively accurate estimation of premiums for the selected sample. The regression results are provided in the 

appendix. 

For informational purposes, the most used severity distributions are the ME Pareto, GPD, and ME GPD (about 75% of the cases), 

while the negative binomial distribution is the most used for modeling frequency (about 80%). Regarding severity distributions, 

this also highlights the utility of modeling the tail of the distribution with a GPD and confirms that the method for selecting 

severity and frequency distributions seems appropriate. 

7.2 Non-pooled treaties 

For non-pooled treaties, the objective is the same, i.e., to compare market premiums with computed technical premiums. For this 

purpose, 57 treaties were selected using the same process, covering over 13 cedents and approximately 20 different risk 

classifications. A linear regression was then conducted using the technical premium for the most appropriate severity and 

frequency distributions according to the ranking methodology, with 50 000 simulations conducted for each treaty. The figure 

below displays the results of the linear regression for these treaties. 

 

Figure 78: Comparison with market premium - non pooled treaty 

Regarding the severity distributions, the three most frequent ones are the Gaussian kernel, the ME GPD, and the GPD (MLE) 

(approximately 60%). For frequency distributions, the negative binomial distribution remains the most used (around 60%). 

For non-pooled treaties, the estimated technical premium is lower than the market premium. The coefficient of the linear regression 

is about 0.87, indicating that, on average, the technical premium is around 13% lower than the market premium. However, the R-

squared value of the regression is close to 1, and the coefficient is statistically significant, which reflects the strong correlation 

between the two amounts. The model thus leads to an underestimation of the market premium for non-pooled treaties, and to a 

greater extent compared to pooled treaties. 

Non-pooled treaties are less accurately modeled than pooled treaties. This could stem from several factors, including the different 

method for calculating safety loadings between these two types of treaties. Generally, it is necessary to analyze each treaty 

individually to understand the source of this underestimation by inspecting historical claims. However, in our case, this provides 

an internal estimate of the premium amount for non-modeled treaties which is quite satisfactory. Additionally, treaties with 

premiums consistently lower than the market premium may be flagged by AXA during discussions with external reinsurers.  
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8. Limits and perspectives 

The methodology developed as part of this tool's construction has, however, several limitations. 

To start with, the methodology is currently applicable only to traditional reinsurance treaties offering 1-year coverage, meaning it 

does not cover multi-year treaties or capital management treaties. Extending the methodology to include these types of treaties 

represents a significant area for improvement, with the goal of broadening the scope of treaties that can be priced. Additionally, 

the impact of underlying treaties applicable before the considered treaty is not fully accounted for across all types of treaties. 

Instead, an approximation is used, involving an inuring rate that can represent the prior impact of a QS or a SP. For underlying 

XL or AGG treaties, their modeling and subsequent impact on the considered treaty become more complex, and this functionality 

has not been considered. As a result, historical claims amounts are modeled net of all inuring treaties that may apply. This 

simplification may lead to an overestimation of some indicators like the technical premium, the loss ratio or the exceedance 

probabilities, as the influence of these preceding treaties is not explicitly assessed in the calculations. 

Furthermore, another limitation of the tool concerns the modeling of CAT treaties, which are not currently modeled. These treaties 

are more complicated to model, as they involve complex components and need specialized models such as RMS, AIR, and ICM. 

Attempting to evaluate a reinsurance treaty without using these advanced models would be a challenging task. However, an 

alternative approach could involve integrating the outputs of these models, which are already computed by other AXA teams, such 

as ELT (Event Loss Table) or YELT (Year Event Loss Table). This could allow CAT and hybrid treaties to be modeled within the 

pricing tool. While this approach offers operational benefits, it would provide less flexibility in terms of underlying models and 

internal vision compared to the approach developed in this actuarial work, except perhaps with an increase in the simulation 

capacity. 

Regarding SP treaties, a methodology has been implemented for the property LoB. By applying the exposure methodology as the 

one implemented for property XL treaties, indicators can be produced for surplus treaties. This methodology is relevant for surplus 

treaties as it allows for the modeling of sums insured, which are critical in surplus treaty calculations. For other LoBs, however, 

SP treaty modeling becomes more complex. This complexity arises due to the less direct relationship between sums insured and 

claim amounts. Effective modeling in these cases would require access to the underlying distribution of sums insured associated 

with each historical claim. Additionally, both claims and sums insured would need to be modeled jointly, potentially using 

multivariate distributions or copulas. 

Additionally, the exposure methodology is currently mainly exclusive to the property LoB in this study. Extending the exposure 

methodology to other LoBs presents an opportunity for further development. Even if we proposed a methodology using exposure 

curves for liability treaties it would require estimating parameters that could not be determined during this study, such as the 

premium sensitivity to changes in limits (Mack & Fackler, 2003). Access to individual premiums and sums insured provided by 

cedents would enable the modeling of XL per-risk liability treaties through exposure curves. Furthermore, the current method 

does not explicitly account for deductibles and limits in underlying policies: they are only partially captured in the frequency-

severity model via inuring rates.  

The tool also does not currently manage life treaties, as these differ significantly in terms of methodology. However, there have 

been previous attempts by the team to model these treaties, which could potentially be integrated into the tool. 

Regarding the modeling of treaties based on loss ratios, such as AGG and QS treaties, the developed methodology is 

straightforward. It involves fitting a single distribution over the entire range of loss ratios without distinguishing between atypical 

claims, attritional and CAT claims. A more refined approach would involve using different distributions, allowing for separate 

modeling of these different types of claims. However, implementing such an approach is challenging due to the limited historical 

data available. One way to address this limitation is by grouping similar entities to expand the historical loss ratios available, 

enabling more robust modeling but less granular. Additionally, as mentioned previously, the model assumes that the "as-if" 
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approach does not impact loss ratios significantly. This assumption - where historical loss ratios are used without adjustments for 

inflation in premiums or losses - could be revisited in the future. 

Finally, from a computational perspective, the simulations required to derive treaty indicators can be time-consuming, particularly 

when calibrating different frequency-severity distributions or dealing with a high number of claims per year. Moreover, the number 

of simulations is sometimes insufficient to accurately estimate extreme loss indicators, such as VaR or exceedance probabilities. 

To address these limitations, variance reduction techniques using conditional Monte Carlo, control variables, or importance 

sampling could be conducted. Based on conditional Monte Carlo, the Asmussen-Kroese estimator might be particularly helpful 

for effectively measuring the exceedance probabilities and return periods of non-proportional treaties. However, these techniques 

are more complex to implement and require the estimation and selection of additional parameters, such as control variables. 

Nevertheless, these methods should not be forgotten to improve the speed and accuracy of estimators obtained through Monte 

Carlo simulations. 

Subsequently, there are several ways to improve this pricing tool. For example, it could support the optimization of reinsurance 

treaties by integrating optimization problems, such as determining the optimal commission for QS treaties, while considering 

factors like ERD, profit, and cost of capital. Concerning XL or AGG treaties, the retention and limit could be chosen in order to 

minimize ceded premiums, ceded margins, and ceded RoC while considering other parameters such as the underlying portfolio's 

net result volatility and the extreme quantiles of potential losses, all while staying within the risk appetite limits set by AXA SA. 

Furthermore, the use of credibility models in the calculation of technical premiums for non-proportional treaties could provide a 

market-based perspective when setting premiums, as opposed to the current internal view. It would also be beneficial to enhance 

the modeling of XL treaties by employing multiple thresholds in the distribution fitting process, as opposed to the single-threshold 

approach used in this study. A combination of exposure-based and experience-based pricing could also be examined to strengthen 

the results. Similarly, different provisioning methods could be developed, allowing for more flexibility, and potentially yielding 

different results compared to the current chain-ladder model. 

 

To conclude, while the methodology developed in this study still has many limitations and areas for improvement, it provides a 

foundation for centralizing reinsurance pricing and evaluation. This represents a first step for the Analytics and Pricing team in 

expanding their approach to pricing and improving their evaluation of reinsurance treaties. 
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9. Pricing tool structure 

The methodology developed throughout this endeavor addressed part of our problematic, which was to propose an approach based 

on internal data enabling the Analytics and Pricing team to have full control over the modeling and pricing process while increasing 

the number of treaties that can be priced. However, to ensure direct usability, facilitate transparency, and allow for easy 

modifications and refinement of methodologies, the development of a pricing tool represents the culmination of the methodology 

and the operational added value of our response to the problem at hand. Indeed, building this tool provides time savings, enables 

rapid control of the modeling process, and centralizes all the developments outlined in the actuarial thesis. Its construction involved 

design considerations, both in terms of the tool's visual rendering and the underlying code structure. 

The reinsurance pricing tool was developed using the R programming language. To ensure flexibility and support future 

modifications, the tool was designed using the object-oriented programming (OOP) paradigm. OOP focuses on organizing 

software design around "objects" - entities with unique attributes and behaviors - rather than just functions or logic. This approach 

is particularly suitable for building tools that need to be maintainable and extensible, aligning with the tool's intended purpose. 

This is due to two properties of the OOP: 

• Encapsulation: Objects are categorized into specific "classes," restricting access and modification to objects outside 

their class. Multiple classes were defined to address the specific requirements of the tool. 

• Inheritance: This allows relationships and hierarchies between objects, enabling shared logic while preserving unique 

structures. This makes the approach highly reusable, efficient, and adaptable for handling future improvements by users 

unfamiliar with the codebase. 

Now, let us describe the architecture and organization of the tool. The tool's core functionality is built around the following classes: 

• “Processing classes”: This type of class encompasses three primary classes: one dedicated to handling operations for 

XL treaties, one for SP treaties and another designed for AGG, and QS treaties. Each class includes functions for 

operations such as payment pattern calculations, IBNR estimations, and other related tasks. Overall, these classes 

centralize the operations detailed in sections 3 and 4. 

• “Modeling classes”: This type of class includes a general class that manages the fitting, ranking, and statistical testing 

of loss distributions. Subsequently, four classes are defined, each one adapted to a specific treaty type in order to perform 

Monte Carlo simulations and compute recoveries or losses. Each of these specialized classes can inherit the properties of 

a fitting class, which fits and ranks distribution on loss ratios/individual claims, or an exposure class for exposure 

modeling. Overall, these classes perform the operations described in part 5. 

• “Pricing classes”: This class is composed of two independent subclasses: one for non-proportional treaties and the other 

for proportional treaties. Each of them provides the indicators described in section 6.  

• “Treaty classes”: The treaty-specific classes inherit functionality from the previously mentioned classes, allowing users 

to independently analyze or extend their studies on a treaty. There is one subclass for each type of treaty. 

The following figure summarizes the architecture of the reinsurance pricing tool: 
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Figure 79: Class architecture 

To simplify user interaction, a dashboard built with R Shiny has also been developed. Initially, information about the treaty must 

be provided: treaty ID, the number of desired simulations, and the number of statistical models (among the "best" fits) to consider 

for reinsurance modeling and pricing purpose as well as for risk and profitability indicators production. All graphs within the tool 

are interactive and were developed using the highcharter and plotply packages available on R, enabling the user to explore results 

effectively

Once the calculations are initiated and completed, the user can access three panels:  

1. Data Processing Panel: This panel displays historical data and outputs from the data processing part. In this panel, one 

can visualize and download different data tables such as raw historical (individual and aggregated) claims, historical 

exposure amounts and their evolution, as well as development triangles, claim counts and their ultimate as-if amounts. 

The treaty’s TC are also visible in this panel (see Databases description and Data processing). The following figure 

provides an overview the processing panel for different treaties. 
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Figure 80: Reinsurance pricing tool – Processing panel 
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2. Modeling Panel: It provides outputs from the loss modeling part. In this part, one can visualize every fitted distribution 

parameters and their corresponding rank, with the metrics used to elaborate this ranking. A visual representation of these 

metrics rank is displayed with spider web graphs. Furthermore, one can also explore various graphs such as the CDF and 

density plots, QQ plot (general and the one used for extreme value theory), simulated recoveries and loss ratios, exposure 

curves, and other relevant metrics/plots (see Modeling losses). The data tables can also be downloaded by the tool’s user. 

 

 



p. 151 

 

 

Figure 81: Reinsurance pricing tool – Modeling panel 

3. Pricing Panel: The final panel presents the different indicators calculated, such as the technical premium, the treaty’s 

cost of capital, loss ratios, commissions, etc. These indicators are presented through a global downloadable data table, 

with options for the user to interactively select and plot specific indicators (see Pricing indicators). 
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Figure 82: Reinsurance pricing tool – Pricing panel 
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Conclusion 

The main purpose of this actuarial thesis was to establish a pricing methodology based on AGCRe’s internal data, independent 

from AXA Group guidelines, to evaluate the risk related to most underwritten and renewed reinsurance treaties characteristics. 

According to the formulated problematic, this process also needed to be standardized and automated in order to appraise a wide 

range of reinsurance treaties, including those not currently modeled with the internal model. The methodology should also be 

capable of assessing both existing and newly underwritten treaties, enabling AGCRe to fully control their modeling process and 

therefore facilitating development prospects.  

Throughout this actuarial project, we focused primarily on pricing treaties that are partly modeled within the internal model such 

as XL per risk treaties or QS treaties to an even lesser extent, and those not modeled such as SP and AGG treaties. We developed 

a structured approach that started with data collection and standard formatting application in accordance with each modeling 

methodology This involved compiling the necessary data sets, such as historical claims, exposure data, pricing data, risk profiles, 

etc. For both individual and aggregated claims, an initial step in estimating ultimate loss amounts has been integrated within the 

tool. This opens the door for future improvements in collaboration with the reserving team, as estimating ultimate losses is usually 

not the responsibility of the Analytics and Pricing team. A Schnieper model, distinct from the classic Chain Ladder approach, was 

also implemented to estimate the ultimate number of claims, a key variable for modeling XL per risk treaties. 

Due to its flexibility in considering the terms and conditions of the different treaties, the Monte Carlo method was applied to 

approximate the probability distributions of the underlying gross losses and corresponding reinsured amounts under any 

considered reinsurance treaties and derived from those simulated distributions a wide range of risk and profitability metrics. 

Concerning AGG and QS treaties, loss ratios were modeled using historical data, incorporating loss development based on the 

Chain Ladder model to estimate ultimate loss ratios and effectively assess the actual loss borne by the reinsurer through various 

continuous probability distributions. Regarding XL per risk treaties, a frequency-severity approach has been developed to simulate 

the distribution of claims. Based on the frequency distribution moments estimated using the Schnieper model and the ultimate as-

if historical amounts, various frequency and severity distributions could be fitted. These distributions, commonly used in 

reinsurance for claims modeling, were taken into consideration because of their statistical properties, based on extreme value 

theory. Additionally, an exposure curve approach for XL and SP property treaties has also been implemented. It provides a point 

of comparison for XL treaties, and a second method in case where the frequency-severity approach fails to properly estimate 

losses. Using Monte Carlo simulations, cedent loss distributions were derived into reinsurer’s losses by applying the treaty terms 

and conditions for each type of treaty.  

These simulations were finally wielded to derive various indicators such as return periods, technical premiums, and treaty margins. 

Cost of capital considerations based on the Solvency II framework were also integrated with different methodologies to establish 

the safety loading for the technical premium of non-proportional treaties, and for information purposes regarding QS and SP 

treaties.  

The methodology was finally tested on XL per risk treaties by comparing the computed technical premium with market premiums. 

In the analyzed sample, the technical premium is underestimated by an average of around 13% for non-pooled treaties, while its 

calculation seems more reliable for pooled treaties.  

Ultimately, our solution to the problem addressed in this actuarial thesis resulted in the development of a pricing tool for AGCRe's 

Analytics & Pricing team, which encapsulates and articulates automatically in a consistent way, all the data processing, modeling 

methodologies, and pricing techniques developed throughout this document. The tool improves the team’s ability to price a broader 

spectrum of treaties based on internal data, including previously unmodeled XL per risk treaties (essentially non pooled treaties), 

as well as QS, SP, and AGG treaties. Its structure allows for the addition of new data coming from ceding entities as well as the 

integration of future complementary models. Furthermore, the inclusion of interactive graphical outputs within the tool's R Shiny 



p. 154 

 

user interface, along with the display of distributions parameters and intermediate data frames, improves transparency and 

auditability together with the user experience throughout the reinsurance risks assessment process. 

Despite certain limitations arising from methodological choices or data insufficiencies, which still restrict the number of treaties 

that can be modeled, the tool has increased the scope of priced treaties and established a foundation for an internal tool that aspires 

to be refined over time.  



p. 155 

 

Bibliography 

Albrecher, H., Beirlant, J., & Teugels, J. (2019). Reinsurance: Actuarial and Statistical Aspects. Wiley. 

Antal, P. (2009). Mathematical methods in Reinsurance. Swiss Re. 

AXA (AGCRe). (2022). Technical premium documentation. Internal documentation. 

AXA (GIE). (2019). Solvency 2 technical documentation - Atypical losses. Internal documentation. 

Baradel , N. (2024). Actuariat de l'assurance non-vie. ENSAE Paris. 

Bernegger, S. (1997). The Swiss Re Exposure Curves and MBBEFD Distribution Class. Astin Bulletin. 

Butun, B. (s.d.). Property Excess of Loss Reinsurance Pricing in the Lloyd's market. Mémoire d'actuariat. 

Charpentier, A., & Flachaire, E. (2019). Pareto models for risk management. Hal. 

Hrevus, J., & Marek, L. (2019). Exposure modelling in property reinsurance. Prague Economic Papers. 

Klugman, S., Panjer, H., & Willmot, G. (2012). Loss Models: From Data to Decisions. Wiley Series in Probability and Statistics. 

Lacoste, P. (2024). Risk Management et Réassurance. ENSAE Paris. 

Mack, T., & Fackler, M. (2003). Exposure rating in Liability Reinsurance. Astin colloquium. 

Mata, A., Fannin, B., & Verheyen, M. (2002). Pricing Excess of Loss Treaty with Loss Sensitive features: An exposure rating 

approach.  

Robert, C. (2022). Théorie du risque. ENSAE Paris. 

Robert, C. (2024). Théorie des valeurs extrêmes. ENSAE Paris. 

Verbelen, R., Gong, L., Katrien , A., Badescu, A., & Sheldon, L. (2014). Fitting Mixtures of Erlangs to Censored and Truncated 

Data Using the EM Algorithm. ASTIN Bulletin. 

Wang, Y., Huseby, A., & Haff, I. (2019). Modelling extreme claims via composite models and threshold. University of Oslo. 

Yeung, K. C. (2011). Index Clause for Aggregate Deductibles and Limits in Non-proportional reinsurance. Casualty Actuarial 

Society. 

 

 

  



p. 156 

 

List of figures 

Figure 1 : Les traités de réassurance au sein d’AGCRe ................................................................................................................... 3 
Figure 2 : Module de sélection et transformation des données ........................................................................................................ 4 
Figure 3 : Module de modélisation des pertes .................................................................................................................................. 5 
Figure 4 : Module de calcul des indicateurs ..................................................................................................................................... 6 
Figure 5 : Comparaison des primes techniques et primes marchés pour les traités non poolés (droite) et poolés (gauche) ............ 7 
Figure 6: Diagram of AXA Group Ceded Re reinsurance commitments ......................................................................................... 9 
Figure 7: Data selection and transformation modules .................................................................................................................... 10 
Figure 8: Modeling modules .......................................................................................................................................................... 11 
Figure 9: Pricing modules .............................................................................................................................................................. 12 
Figure 10: Comparison of technical and market premiums for non-pooled (right) and pooled (left) treaties ................................ 12 
Figure 11: Classification of reinsurance treaties ............................................................................................................................ 23 
Figure 12: Comparison of retained/ceded premium and claim amounts for a QS 40% ................................................................. 24 
Figure 13: Cession rate evolution of a SP treaty ............................................................................................................................ 25 
Figure 14: Example of an XL treaty 100 € M xs 50 € M ............................................................................................................... 26 
Figure 15: Diagram of AGCRe commitments ................................................................................................................................ 29 
Figure 16: Overview of the reinsurance pricing tool architecture .................................................................................................. 31 
Figure 17: Overview of outstanding claims reserves ..................................................................................................................... 34 
Figure 18: Distribution of the number of historical claims per year – historical individual claims ............................................... 35 
Figure 19: Data processing process ................................................................................................................................................ 39 
Figure 20: Median comparison for individual development factors .............................................................................................. 45 
Figure 21: Linear regression of 𝐶𝑖, 𝑗 + 1 on 𝐶𝑖, 𝑗 ........................................................................................................................... 45 
Figure 22: Standardized residuals .................................................................................................................................................. 46 
Figure 23: Cumulated PP of a property reinsurance treaty’s covered underlying claims ............................................................... 47 
Figure 24: Cumulated PP of a liability reinsurance treaty’s covered underlying claims ................................................................ 48 
Figure 25: Overview of the as-if calculation process ..................................................................................................................... 49 
Figure 26: Historical claims amount for a property 1M€ xs 2M€ treaty ........................................................................................ 50 
Figure 27: Historical claims amount for a liability 10M€ xs 10M€ treaty ..................................................................................... 50 
Figure 28: Data processing module overview – XL per risk treaties ............................................................................................. 55 
Figure 29: Data processing module overview – AGG and QS treaties .......................................................................................... 55 
Figure 30: Data processing module overview – SP treaties ........................................................................................................... 55 
Figure 31: Modeling process .......................................................................................................................................................... 57 
Figure 32: Historical ultimate number of claims of the XL treaty number 1 ................................................................................. 60 
Figure 33: Comparison of Poisson and Negative Binomial probability distribution - XL treaty number 1 ................................... 62 
Figure 34: Distribution of historical as-il ultimate claims - XL treaty number 1 ........................................................................... 62 
Figure 35: Density of historical as-if ultimate claims - XL treaty number 1 .................................................................................. 63 
Figure 36: Example of exponential QQ-plot .................................................................................................................................. 68 
Figure 37: Exponential QQ-plot – XL treaty number 1 ................................................................................................................. 68 
Figure 38: Pareto QQ plot – XL treaty number 1 ........................................................................................................................... 69 
Figure 39: Log-Normal QQ plot of the XL treaty number 1 .......................................................................................................... 69 
Figure 40: Example of a mean excess plot ..................................................................................................................................... 71 
Figure 41: Mean excess plot – XL treaty number 1 ....................................................................................................................... 71 
Figure 42: AMSE plot of the XL treaty number 1 .......................................................................................................................... 73 
Figure 43: Hill plot of the XL per risk number 1 ........................................................................................................................... 73 
Figure 44: Spider web chart – XL treaty number 1 ........................................................................................................................ 78 



p. 157 

 

Figure 45: CDF of fitted distributions – XL treaty number 1......................................................................................................... 79 
Figure 46: CDF of fitted distributions (zoom) – XL treaty number 1 ............................................................................................ 79 
Figure 47: QQ plot of fitted distributions – XL treaty number 1 ................................................................................................... 80 
Figure 48: Experience modeling process – XL per risk treaties ..................................................................................................... 81 
Figure 49: Evolution of retention under a stabilization clause ....................................................................................................... 83 
Figure 50: Evolution of limit under a stabilization clause ............................................................................................................. 83 
Figure 51: Cumulated individual claim amount/recovery – XL treaty number 1 ........................................................................... 84 
Figure 52: Distribution of recoveries – XL treaty number 1 .......................................................................................................... 86 
Figure 53: Treaty T&C application process - XL per risk treaties ................................................................................................. 87 
Figure 54: Sum Insured distribution – Range: 500 001 € - 1 000 000 € ........................................................................................ 96 
Figure 55: Exposure modeling process – XL per risk treaties...................................................................................................... 101 
Figure 56: Modeling process - SP ................................................................................................................................................ 103 
Figure 57: QQ plot – XL exposure pricing .................................................................................................................................. 104 
Figure 58: Distribution of claim number per year – exposure modeling ..................................................................................... 105 
Figure 59: Distribution of individual claims amounts – exposure modeling ............................................................................... 105 
Figure 60: Impact of a loss corridor on a GLR ............................................................................................................................ 111 
Figure 61: Effect of a sliding scale commission .......................................................................................................................... 112 
Figure 62: Modeling process – QS treaties .................................................................................................................................. 114 
Figure 63: Modeling process – AGG treaties ............................................................................................................................... 116 
Figure 64: Pricing process ............................................................................................................................................................ 117 
Figure 65: Comparison of safety loadings rates 𝛼 ....................................................................................................................... 123 
Figure 66: SCR risk modules ....................................................................................................................................................... 124 
Figure 67: Technical premium heatmap – XL treaty number 1 .................................................................................................... 127 
Figure 68: Technical premium comparison with market premium heatmap – XL treaty number 1 ............................................. 128 
Figure 69: Technical premium within the LoB – XL treaty number 1 ......................................................................................... 129 
Figure 70: Technical premium and LoB surface – XL treaty number 1 ....................................................................................... 129 
Figure 71: Exceedance probabilities – XL treaty number 1 ......................................................................................................... 131 
Figure 72: Recovery amounts for fixed return periods – XL treaty number 1 ............................................................................. 132 
Figure 73: Pricing process – non-proportional treaties ................................................................................................................ 135 
Figure 74: Distribution of cedents’s loss ratios ............................................................................................................................ 137 
Figure 75: Comparison of cedent’s LR and reinsurer’s net LR .................................................................................................... 137 
Figure 76: Pricing process – proportional treaties ........................................................................................................................ 141 
Figure 77: Comparison with market premium – Pooled treaties .................................................................................................. 142 
Figure 78: Comparison with market premium - non pooled treaty .............................................................................................. 143 
Figure 79: Class architecture ........................................................................................................................................................ 147 
Figure 80: Reinsurance pricing tool – Processing panel .............................................................................................................. 149 
Figure 81: Reinsurance pricing tool – Modeling panel ................................................................................................................ 151 
Figure 82: Reinsurance pricing tool – Pricing panel .................................................................................................................... 152 

  



p. 158 

 

List of tables 

Table 1 : Aperçu de l’outil de tarification ......................................................................................................................................... 8 
Table 2: Overview of the reinsurance pricing tool ......................................................................................................................... 14 
Table 3: List of variables - reinsurance T&C database .................................................................................................................. 32 
Table 4: List of variables - individual historical claims database ................................................................................................... 34 
Table 5: List of variables - historical aggregated clams database .................................................................................................. 35 
Table 6: List of variables - historical exposure database ................................................................................................................ 36 
Table 7: List of variables - risk profile database ............................................................................................................................ 37 
Table 8: List of data – pricing data ................................................................................................................................................. 37 
Table 9: List of variables – index database .................................................................................................................................... 38 
Table 10: List of variables – FX rates database .............................................................................................................................. 38 
Table 11: Variables needed from reinsurance T&C per treaty type ................................................................................................ 40 
Table 12: List of data tables required for pricing each type of treaty ............................................................................................. 41 
Table 13: Example of a development triangle for an XL treaty ..................................................................................................... 44 
Table 14: Example of individual development factors ................................................................................................................... 44 
Table 15: Example of development factors .................................................................................................................................... 44 
Table 16: Overview of Poisson process properties......................................................................................................................... 51 
Table 17: Example of a development triangle for the number of claims ........................................................................................ 53 
Table 18: Example of historical exposure value............................................................................................................................. 53 
Table 19: Development factors for ultimate number of claims ...................................................................................................... 53 
Table 20: Ultimate claim frequency ............................................................................................................................................... 54 
Table 21: Spliced severity distribution retained for severity modeling .......................................................................................... 64 
Table 22: Overview of extremal classes and their component distributions .................................................................................. 66 
Table 23: Description of EVT plots ............................................................................................................................................... 74 
Table 24: Considered ranking metrics ............................................................................................................................................ 77 
Table 25: Fitting comparison - XL treaty number 1 ....................................................................................................................... 77 
Table 26: Rank of the best 4 distributions - XL treaty number 1 ................................................................................................... 78 
Table 27: Indexation clause parameters ......................................................................................................................................... 83 
Table 28: Swiss Re exposure curves .............................................................................................................................................. 91 
Table 29: Risk profile example – XL exposure pricing .................................................................................................................. 93 
Table 30: Pure premium calculation ............................................................................................................................................... 94 
Table 31: Pure premium comparison ............................................................................................................................................. 94 
Table 32: Sum Insured distribution parameters .............................................................................................................................. 97 
Table 33: Swiss Re exposure curves parameters ............................................................................................................................ 99 
Table 34: Frequency parameters .................................................................................................................................................... 99 
Table 35: Recovery mean – frequency/severity ........................................................................................................................... 105 
Table 36: Recovery mean – exposure pricing .............................................................................................................................. 106 
Table 37: Market premiums ......................................................................................................................................................... 106 
Table 38: Diversification matrix .................................................................................................................................................. 124 
Table 39: Comparison of safety loadings – XL treaty number 1 .................................................................................................. 125 
Table 40: Reinstatement factor – XL treaty number 1 ................................................................................................................. 126 
Table 41: Technical premium – XL treaty number 1 .................................................................................................................... 126 
Table 42: Treaty SCR – XL treaty number 1 ................................................................................................................................ 130 
Table 43: Exceedance return periods (in years) – XL treaty number 1 ........................................................................................ 131 
Table 44: Loss Ratios – XL treaty number 1 ................................................................................................................................ 133 



p. 159 

 

Table 45: ERD – XL treaty number 1 .......................................................................................................................................... 133 
Table 46: Indicators for proportional treaties – Example ............................................................................................................. 138 
Table 47: Overview of proportional treaty indicators .................................................................................................................. 139 

  



p. 160 

 

Appendix 

Appendix A: Frequency distributions 

Frequency distribution  Properties 

Poisson distribution 
Probability distribution: For all 𝑘 ∈ ℕ, ℙ(𝑁 = 𝑘) = 𝑒−𝜆

𝜆𝑘

𝑘!
  

Mean: 𝔼(𝑁) = 𝜆 

Variance: 𝑉𝑎𝑟(𝑁) =  𝜆 

Negative Binomial 

distribution 

Probability distribution: For all 𝑘 ∈ ℕ, ℙ(𝑁 = 𝑘) =
Γ(𝑘+𝑛)

𝑘!Γ(𝑛)
𝑝𝑛(1 − 𝑝)𝑘 where Γ(𝑛) =

(𝑛 − 1)! denotes the Euler function. 

Mean: 𝔼(𝑁) =
𝑛(1−𝑝)

𝑝
 

Variance: 𝑉𝑎𝑟(𝑁) =  
𝑛(1−𝑝)

𝑝2
 

Binomial distribution  Probability distribution: For all 𝑘 ∈ [0; 𝑛], ℙ(𝑁 = 𝑘) = (
𝑛
𝑘
)𝑝𝑘(1 − 𝑝)𝑛−𝑘. 

Mean: 𝔼(𝑁) = 𝑛𝑝 

Variance: 𝑉𝑎𝑟(𝑁) =  𝑛𝑝(1 − 𝑝) 

 

Appendix B: Continuous distributions 

Exponential distribution 

Let 𝜆 > 0.  We list below the various properties of the exponential distribution with parameter 𝜆 noted 𝑋: 

• Probability density: For all 𝑡 ∈ ℝ+, 𝑓(𝑡) = 1𝑡≥0𝜆 exp(−𝜆𝑡) 

• Mean: 𝔼(𝑋) =
1

𝜆
 

• Variance: 𝑉𝑎𝑟(𝑋) =  
1

𝜆2
 

• Cumulative Distribution Function (CDF): 𝐹(𝑡) = {
1 − 𝑒−𝜆𝑡 , 𝑡 ≥ 0

0, 𝑡 < 0
 

Log-Normal distribution 

The Log-Normal distribution is a continuous probability distribution with strictly positive real values. A random variable 𝑋 follows 

a Log-Normal distribution with parameters 𝜇 and 𝜎2 if the random variable ln(𝑋) follows a Normal distribution with parameters 

𝜇 and 𝜎2.  

Let 𝜇 ∈ ℝ and 𝜎2 > 0.  We list below the various properties of the random variable 𝑋 which we assume to follow a Log-Normal 

distribution with parameters 𝜇 and 𝜎2: 

• Probability density: For all 𝑡 ∈ ℝ+∗, 𝑓(𝑡) =
1

𝑡𝜎√2𝜋
exp(−

(ln(𝑡)−𝜇)2

2𝜎2
) 

• Mean: 𝔼(𝑋) = exp(𝜇 +
𝜎2

2
) 

• Variance: 𝑉𝑎𝑟(𝑋) = (exp(𝜎2) − 1) ∗ exp (2𝜇 + 𝜎2) 

Gamma distribution 



p. 161 

 

Gamma distribution is a type of probability distribution for positive real random variables. A Gamma distribution is characterized 

by two parameters 𝑘 and 𝜃 which are respectively designed by the shape and scale of the gamma distribution. 

Let 𝑘 > 0 and 𝜃 > 0. We list below the various properties of the random variable 𝑋 which we assume to follow a gamma 

distribution with parameters 𝑘 and 𝜃: 

• Probability density: For all 𝑡 ∈ ℝ+∗, 𝑓(𝑡) =
𝑡𝑘−1 exp(−

𝑡

𝜃
)

Γ(𝑘)𝜃𝑘
 

• Mean: 𝔼(𝑋) = 𝑘𝜃 

• Variance: 𝑉𝑎𝑟(𝑋) = 𝑘𝜃2 

Generalized Pareto Distribution 

The Generalized Pareto Distribution (GPD) is a family of continuous probability distributions. It can be specified by three 

parameters: location 𝜇, scale 𝜎 and shape 𝛾. 

Let 𝜎 > 0 and 𝛾 ∈ ℝ We list below the various properties of the random variable 𝑋 which we assume to follow a GPD of 

parameters 𝜎 and 𝛾: 

• Density function: For 𝑡 ≥ 0 when 𝛾 ≥ 0 and for 0 ≤ 𝑡 ≤ −
1

𝛾
 when 𝛾 < 0 

𝑓(𝑡) =

{
 
 

 
 
1

𝜎

(1 + 𝛾(
𝑡

𝜎
))
(− 
1
𝛾
−1)

, 𝛾 ≠ 0 

1

𝜎
exp(−

𝑡

𝜎
) , 𝛾 = 0 

 

• Mean: If 𝛾 < 1, 𝔼(𝑋) =
𝜎

1−𝛾
 

• Variance: If 𝛾 < 0.5, 𝑉𝑎𝑟(𝑋) =
𝜎2

(1−𝛾)2(1−2𝛾)
 

• Cumulative Distribution Function (CDF): For 𝑡 ≥ 0 when 𝛾 ≥ 0 and for 0≤ 𝑡 ≤ −
𝜎

𝛾
 when 𝛾 < 0 

𝐹(𝑡) = 𝐺𝑃𝐷𝜎,𝛾(𝑡) =

{
 
 

 
 
1 − (1 + 𝛾(

𝑡

𝜎
))
− 
1
𝛾
−

, 𝛾 ≠ 0 

1 − exp(−(
𝑡

𝜎
)) , 𝛾 = 0 

 

Weibull distribution 

The Weibull distribution is a family of continuous probability distributions. It is defined by one parameter 𝛼. 

Consider 𝛼 > 0 and 𝜆 > 0. We list below the various properties of the random variable 𝑋 which we assume to follow a Weibull 

distribution of parameter 𝛼: 

• Density function: For 𝑡 ≥ 0, 𝑓(𝑡) = {
αλtα−1exp (−𝜆𝑡𝛼), 𝑡 ≥ 0 

0, 𝑡 < 0 
 

• Mean: 𝔼(𝑋) =
1

𝜆
∗ Γ(1 +

1

𝛼
) 

• Variance: 𝑉𝑎𝑟(𝑋) =
1

𝜆2
∗ Γ (1 +

2

𝛼
) −

1

𝜆2
∗ Γ (1 +

1

𝛼
)
2

 

• Cumulative Distribution Function (CDF): For 𝑡 ∈ ℝ  

𝐹(𝑡) = {
1 − exp (−𝜆𝑡𝛼), 𝑡 ≥ 0 

0, 𝑡 < 0 
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Fréchet distribution 

The Fréchet distribution is specified by one parameter 𝛼. 

Consider 𝛼 > 0. We list below the various properties of the random variable 𝑋 which we assume to follow a Fréchet distribution 

of parameter 𝛼: 

• Density function: For 𝑡 ≥ 0 𝑓(𝑡) = {
αt−α−1exp (−𝑡−𝛼), 𝑡 ≥ 0 

0, 𝑡 < 0 
 

• Mean: 𝔼(𝑋) = Γ (1 −
1

𝛼
) if 𝛼 > 0, ∞ otherwise 

• Variance: 𝑉𝑎𝑟(𝑋) = Γ (1 −
2

𝛼
) − Γ (1 −

1

𝛼
)
2

 if 𝛼 > 2, ∞ otherwise 

• Cumulative Distribution Function (CDF): For 𝑡 ∈ ℝ  

𝐹(𝑡) = {
exp (−𝑡−𝛼), 𝑡 ≥ 0 

0, 𝑡 < 0 
 

Gaussian Kernel 

Unlike previous distributions, kernel estimation is a non-parametric method used for estimating the density of a random variable. 

Taking a vector of observations (𝑥𝑖)1≤𝑖≤𝑛 assumed to be an iid sample of a random variable, the non-parametric estimator of the 

density function of the random variable is:  

𝑓(𝑥) =  
1

𝑛ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

 

Where: 

• ℎ is a real number corresponding to a smoothing parameter 

• 𝐾 is a kernel, equal in our case to the density of a standard normal distribution  

Pareto distribution 

The Pareto distribution is specified by one parameter 𝛾 and a threshold 𝑢. 

Consider 𝛾 > 0 and 𝑢 > 0. We list below the various properties of the random variable 𝑋 which we assume to follow a Pareto 

distribution: 

• Density function: For 𝑡 ≥ 0 𝑓(𝑡) = {
1

𝛾𝑢
(
𝑡

𝑢
)
−
1

𝛾
−1

, 𝑡 ≥ 𝑢 

0, 𝑡 < 𝑢 
 

• Mean: 𝔼(𝑋) =
𝑢

1−𝛾
 if 𝛾 < 1, ∞ otherwise 

• Variance: 𝑉𝑎𝑟(𝑋) =

𝑢2

𝛾

(1−
1

𝛾
)
2
(
1

𝛾
−2)

 if 𝛾 <
1

2
, ∞ otherwise 

• Cumulative Distribution Function (CDF): For 𝑡 ∈ ℝ  

𝐹(𝑡) = {1 − (
𝑡

𝑢
)
−
1
𝛾
, 𝑡 ≥ 𝑢 

0, 𝑡 < 𝑢 
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Appendix C: Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a statistical method used to estimate the parameters of a statistical model from 

observed data. The likelihood of the parameter vector 𝜃 given the observed data (𝑋𝑖)1≤𝑖≤𝑛is defined by the function 𝐿(. ) :  

𝐿(𝜃) =  ∏𝑓(𝑋𝑖; 𝜃)

𝑛

𝑖=1

 

The log-likelihood is often preferred over the likelihood. This function is defined by 𝑙(. ) function: 

𝑙(𝜃) = log(𝐿(𝜃)) =  ∑ log(𝑓(𝑋𝑖; 𝜃))

𝑛

𝑖=1

 

The maximum likelihood estimator (MLE) of 𝜃 which is denoted as  𝜃̂ is the solution of the following equation: 

sup
𝜃
 𝑙(𝜃) = 𝑙(𝜃̂) 

For the considered probability distributions, the function 𝑙(. ) is differentiable. Thus, if the first derivative of 𝑙(𝜃) equals zero at 

𝜃 = 𝜃̂ and the second derivative is strictly negative at 𝜃 = 𝜃̂, then 𝜃̂ is a local maximum of 𝑙(. ). If 𝜃̂ satisfies these two conditions, 

𝜃̂ is a maximum likelihood estimator.  

Regarding its properties, the estimator obtained by MLE is: 

• Consistent: MLE estimators converge in probability to the true parameter 𝜃  

• Asymptotically normal: The MLE estimator is asymptotically distributed according to a normal distribution. This 

property of the estimator makes it possible to construct confidence intervals 𝐶𝑛 with probability  1 − 𝛼 with 𝐶𝑛 = (𝜃̂ −

𝜙−1 (1 −
𝛼

2
) ∗ 𝜎𝜃̂ ,̂  𝜃̂ + 𝜙−1 (1 −

𝛼

2
) ∗ 𝜎𝜃̂ ̂ ) where 𝜙−1 (1 −

𝛼

2
) denotes the quantile of order 1 −

𝛼

2
 of the Normal 

distribution and 𝜎𝜃̂ ̂ the estimated standard deviation of 𝜃̂. 

• Asymptotically efficient: MLEs reach the Cramer-Rao bound, which means they have the lowest variance among all 

possible unbiased estimators, for large sample sizes. 

Let us take an example to illustrate the application of maximum likelihood estimation. Suppose that the realizations (𝑋𝑖)1≤𝑖≤𝑛 are 

distributed according to an exponential distribution with parameters 𝜆. In our case, the log likelihood is equal to 𝑙(𝜆) =  −𝑛 ∗

ln( 𝜆) − 𝜆∑ ln(𝑋𝑖)
𝑛
𝑖=1 . This function is differentiable, and its derivative is 𝑙′(𝜆) =

𝑛

𝜆
− ∑ ln(𝑋𝑖)

𝑛
𝑖=1 . We can easily check that the 

second derivative is negative at any point. Consequently, the maximum likelihood estimator is 𝜆̂ =
1

𝑛
∑ ln(𝑋𝑖)
𝑛
𝑖=1 . 

 

 

 

 

 

 



p. 164 

 

Appendix D: Distribution parameters of XL treaty number 1 

Frequency distribution parameters:  

 

 

Gamma distribution 

 

ME – GPD distribution 
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ME – Pareto distribution:  

 

Appendix E: Distribution ranking of XL treaty number 1 

Distribution 𝑮𝒍𝒐𝒃𝒂𝒍 𝒓𝒂𝒏𝒌 𝒊𝒏𝒅𝒆𝒙 Rank 

GAUSSIAN_KERNEL 5,80 1 

ME_GPD 11,17 2 

ME_PARETO 15,17 3 

GAMMA_MME 21,60 4 

WEIBULL_MME 32,40 5 

GAMMA_MLE 42,33 6 

WEIBULL_MLE 43,67 7 

GAMMA_GPD 78,83 8 

NORMAL_GPD 95,83 9 

GPD_MLE 96,67 10 

KERNEL_GPD 104,40 11 

WEIBULL_GPD 116,17 12 

EXPONENTIAL_MLE 152,83 13 

EXPONENTIAL_MME 166,40 14 

LN_GPD 200,67 15 

LOG_NORMAL_MLE 234,50 16 

LOG_NORMAL_MME 250,20 17 

FRECHET_MLE 294,00 18 

FRECHET_MME 361,00 19 
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Appendix F: Distribution parameters for exposure curve comparison  

Fitting statistics obtained with frequency-severity approach:  

Distributions Mean Standard 

deviation 

Quantile 

(90) 

Quantile 

(99) 

Log 

likelihood 

KS 

distance 

KS  

p-value 

CVM 

distance 

CVM 

p-value 

GAUSSIAN_KERNEL 1 172 644 € 1 355 177 € 2 964 660 € 6 721 673 € / 0,16 0,11 0,16 0,36 

ME_GPD 1 194 298 € 1 638 288 € 3 048 522 € 7 123 707 € -80,75 0,14 0,25 0,18 0,31 

ME_PARETO 1 227 042 € 1 413 615 € 3 312 736 € 6 511 733 € -80,43 0,14 0,25 0,18 0,31 

GPD (MLE) 1 171 567 € 1 302 444 € 2 729 108 € 6 146 294 € -63,45 0,26 0 0,6 0,02 

 

Severity CDF:  

 

 

Appendix G: R packages 

data.table, dplyr, tidyverse, lubridate, stringr, here, ggplot2, highcharter, shiny, DT, ggpubr, plotly, RColorBrewer, fitdistrplus, 

goftest, univariateML, VGAM, gamlss, ReIns, actuar, mev, evmix, ks, mbbefd, moments, zoo, akima, mco, fmsb 

Appendix H: Market premium comparison 

Linear regression result with quantile safety loading approach: 
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Linear regression result with standard deviation safety loading approach: 

 

Linear regression result with variance safety loading approach: 

 

Linear regression result for non-pooled treaties: 

 

Zoom on linear regression for non-pooled treaties:  
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Appendix I: Risk measure definition 

𝑃 is a risk measure if it satisfies the following conditions: 

• Positive loading: 𝔼(𝑅)  ≤  𝑃(𝑅) 

• No-ripoff: 𝑃(𝑌) ≤ 𝑄𝑅(1) = inf{ 𝑥 ∶ 𝐹𝑅(𝑥) = 1}  

• No unjustified risk loading: ℙ(𝑅 =  𝑏) = 1 implies that 𝑃(𝑅)  =  𝑏 

• Positive homogeneity: 𝑃(𝑎𝑅)  =  𝑎𝑃(𝑅) for any real constant 𝑎 >  0 

• Translation invariance: 𝑃(𝑅 +  𝑏)  =  𝑃(𝑅)  +  𝑏 for any real constant 𝑏. 

• Monotonicity: For two distributions 𝑅1 and 𝑅2, 𝑃(𝑅1)  ≤  𝑃(𝑅2) if 𝐹𝑅1(𝑥) ≥ 𝐹𝑅2(𝑥) for all 𝑥 

• Subadditivity: 𝑃(𝑅1 + 𝑅2)  ≤  𝑃(𝑅1)  +  𝑃(𝑅2) 

• Additivity: 𝑃(𝑅1 + 𝑅2)  =  𝑃(𝑅1)  +  𝑃(𝑅2) if 𝑅1 and 𝑅2 are independent. 

• Convexity: 𝑃(𝑝𝑅1  + (1 −  𝑝)𝑅2)  ≤  𝑝𝑃(𝑅1)  +  (1 −  𝑝) 𝑃(𝑅1) for any 0 < 𝑝 < 1. 

 


