

Hôtel Marriott Rive Gauche Paris 14ème

Zonier avec Open Data et Machine Learning

Montassar BEN LAIBA, Nabil RACHDI – ADDACTIS France Olivier VERMASSEN, Joanna CHARDON – AXA France

SOMMAIRE

- 01 Contexte
- 02 Geo-Smoothing
- 03 Méthodologie
- Données Externes et Modélisation
- 05 Résultats
- 06 Conclusion & Perspectives

Contexte

- Le zonier est l'une des variables les plus explicatives lors de la modélisation de la prime pure automobile. C'est pourquoi il s'agit d'un **enjeu majeur** pour de nombreux acteurs du marché.
- La méthodologie de la construction du zonier progresse depuis des années. La robustesse, la performance ainsi que la stabilité de ces modèles sont des enjeux considérables pour les acteurs du marché.
- L'apport des données externes permettra sans aucun doute d'apporter encore plus de performance et de stabilité dans les modèles.



POURQUOI UN ZONIER?

MIEUX MESURER LA SINISTRALITÉ

ESSOR DE LA CONCURRENCE ET PROGRESSION DU DIRECT

DES ASSURÉS EXIGEANTS ET INFORMÉS DES TARIFS

Segmenter plus précisément les facteurs de risques est donc indispensable, et cette tendance inclut l'étude du risque géographique.

Geo-smoothing - methodology

Methodology

- Offset Emblem predictions
- Smooth the residuals by longitude/latitude
- Output are corrective relativities per ZIP code

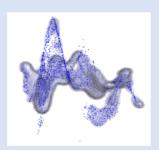
Requirements

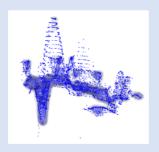
- Intuitive method
- Fast and automated
- Statistically sound method

OPTIONAL

Factor

Several ways to bin relativities into a factor





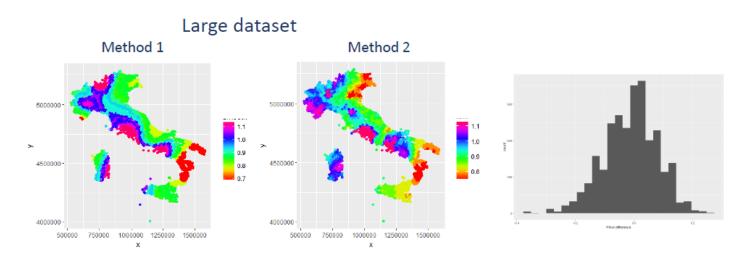
Results

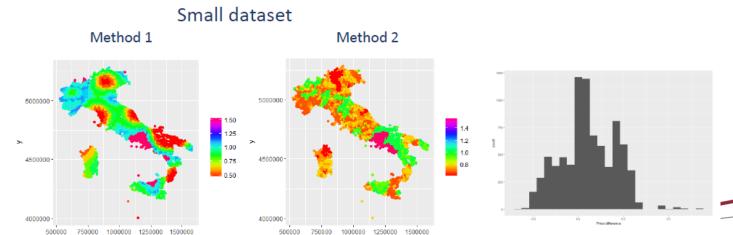
- We obtained good results ...
- Yet no method consistently outperforms the other
- Necessary to experiment with different methods
- Easy since everything is fast + opensource

Deployment

- Statistical fit shows classification performance on ZIP codes observed within the portfolio
- Also necessary to look at classification of ZIP codes not observed in order to prevent UW leakage

Comparison of two methods





Geo-smoothing Tool

Certains portefeuilles comportent des spécificités qui peuvent limiter les méthodes classiques de construction d'un Zonier

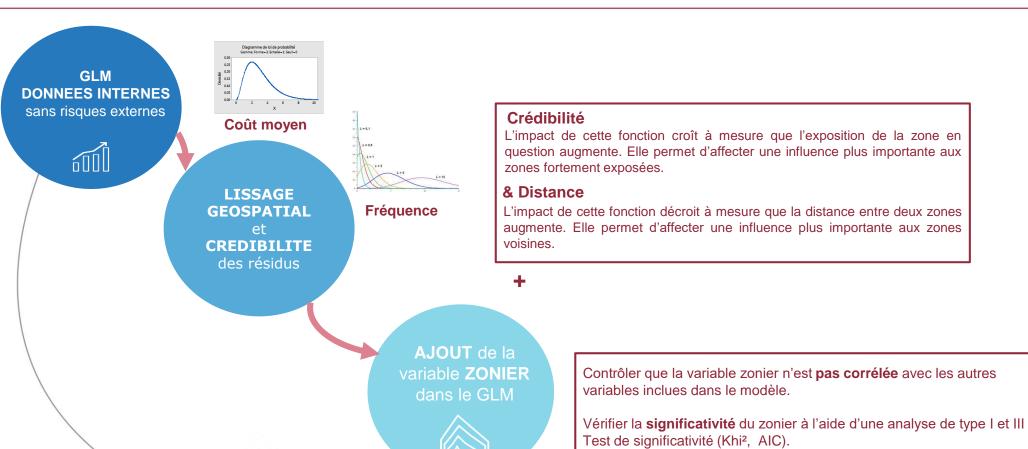
MANQUE D'EXPOSITION DANS DE NOMBREUSES REGIONS

MANQUE DE PRÉCISION

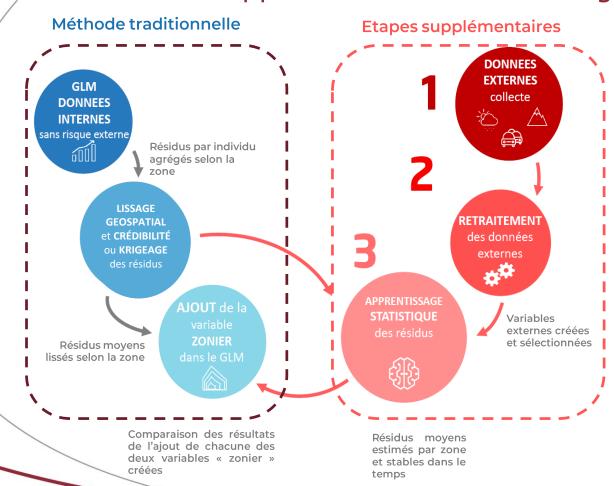
FORTE DÉPENDANCE AU PORTEFEUILLE D'ASSURÉS

PAS D'INFORMATION GÉOGRAPHIQUES EN INTERNE

La méthodologie traditionnelle



L'apport de notre méthodologie



INTÉRÊT:

Expliquer les informations des résidus en leur apportant davantage d'informations **géographiques**

COLLECTE D'INFORMATIONS GEOGRAPHIQUES EXTERNES

Bases de données publiques

Apis pour les données du réseau routier

Informations **météorologiques** et **climatiques**

Addactis travaille depuis de nombreuses années sur l'alimentation d'une base de data externes.

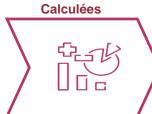
Carte routière de la ville de Granville (50) obtenue via l'API Osmnx sous Python

Retraitement des données externes

Nettoyage de la base après analyse de la pertinence, de la fiabilité et du rafraichissement des différentes sources.

Création de nouvelles variables pertinentes, stables et adaptées à chaque situation à partir des données brutes collectés (exploitables sur de nombreuses données brutes).

Analyse des corrélations des variables et traitement des données manquantes.



Retraitées

Analyse des données extrêmes, atypiques, manquantes

Analysées

One-one analysis, Statistiques descriptives

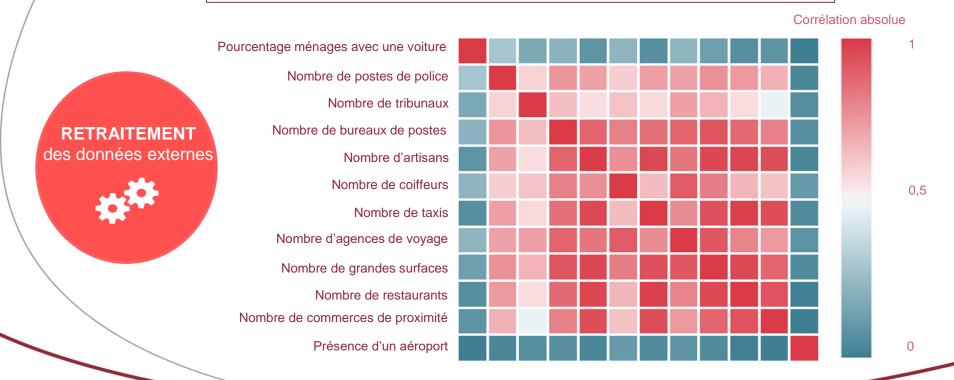
Assemblées

Croiser des variables, regrouper, assembler par corrélation

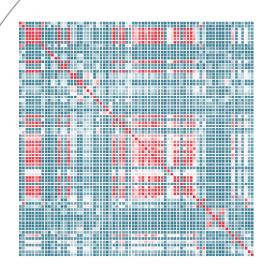
Lissage par crédibilité et/ou krigeage

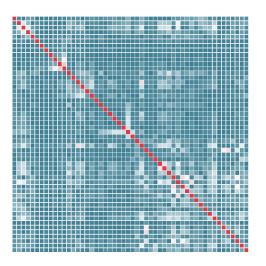
Etude des corrélations

Matrice de **corrélation** des variables avant sélection des variables, présentant des corrélations parfois fortes.

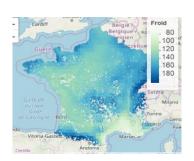


Sélection des variables avec du Machine Learning





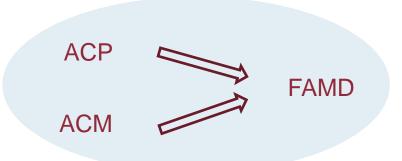
De la « Raw Data » à la « Smart Data »



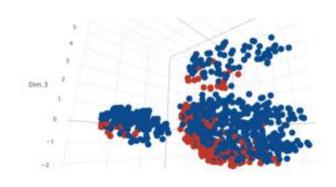
arrêté CAT-NAT

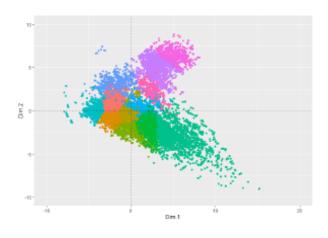
Eyrieux	Inondation	7221	Sair
Eyrieux	Inondation	7237	Sair
Eyrieux	Inondation	7248	Sair
Eyrieux	Inondation	7252	Sair
Eyrieux	Inondation	7256	Sair
Eyrieux	Inondation	7261	Sair
Eyrieux	Inondation	7269	Sair
Eyrieux	Inondation	7274	Sair
Eyrieux	Inondation	7278	Sair
Eyrieux	Inondation	7295	Sair
Eyrieux	Inondation	7303	Sair
Eyrieux	Inondation	7349	LaV
e Chassez	Inondation	7017	Les
Chassezac	Inondation	7028	Beau
Chassezac	Inondation	7031	Berr
Chassezac	Inondation	7050	Char

Sélection de variables :



Analyse **simultanée** des données quantitatives et qualitatives

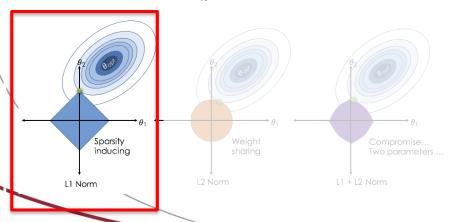




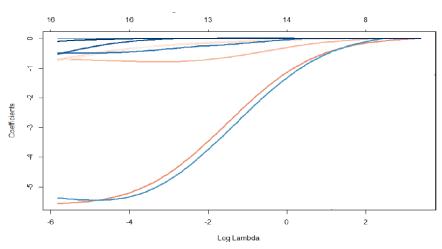
Sélection de variables :

$$\hat{\beta} = argmin \left\{ \sum_{i=1}^{n} \left[y_i - \left(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ji} \right) \right] + \lambda \sum_{j=1}^{k} |\beta_j| \right\}$$

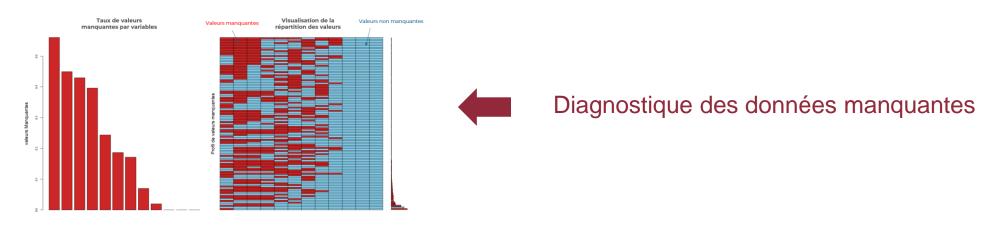
Méthode LASSO (pénalisation en norme L1)



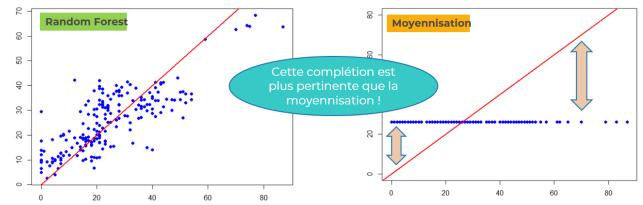
Trajectoires de régularisation



DATA WRANGLING (Retraitement, structuration, enrichissement)

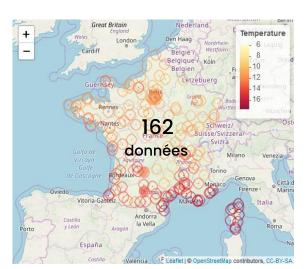


Complétion des données manquantes (au-delà de la moyenne !!)



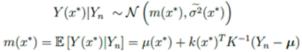
DATA WRANGLING (Retraitement, structuration, enrichissement)

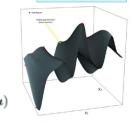
Enrichissement par Kriging:



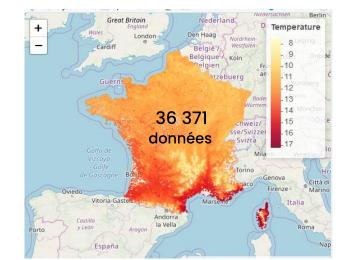
exemple avec des données météos

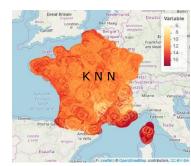
Interpolation par **processus Gaussien** conditionné





Modèle d'apprentissage



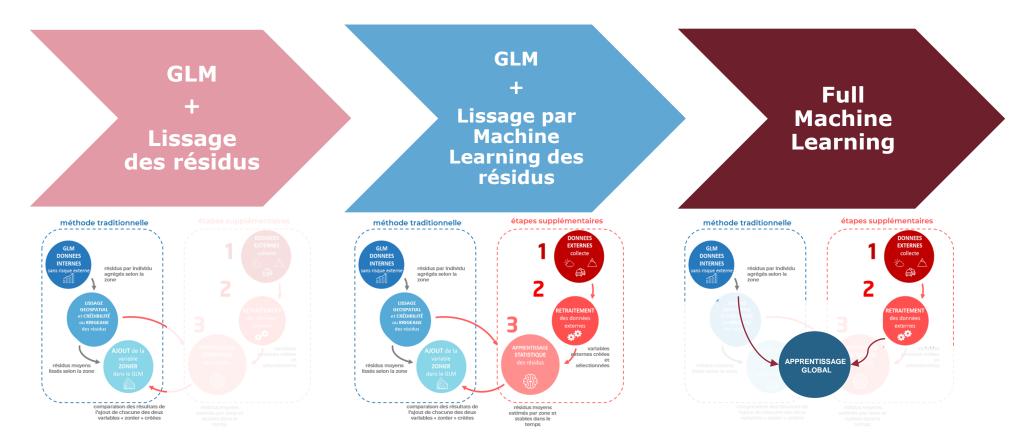


K plus proche voisins

Support vector machine

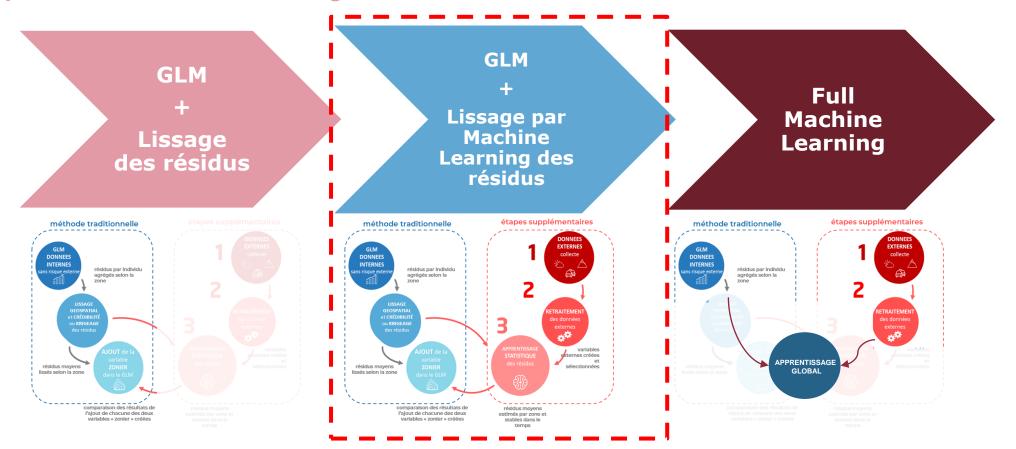
Stratégie de modélisation

Il existe plusieurs stratégies de modélisation pour la construction et l'intégration d'un zonier



Stratégie de modélisation

Il existe plusieurs stratégies de modélisation pour la construction et l'intégration d'un zonier



Apprentissage statistique des résidus

Modèles envisageables :

RANDOM FOREST GRADIENT BOOSTING RÉSEAUX DE NEURONES

APPRENTISSAGE STATISTIQUE des résidus

Objectifs du Machine Learning

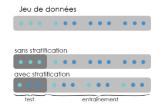
S Réexpliquer le risque géographique uniquement à l'aide de données externes

⚠ Comprendre les raisons des niveaux de danger

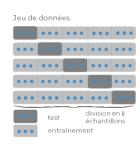
Etre stable dans le temps et capable d'absorber les chocs

Valider la robustesse de chaque modèle

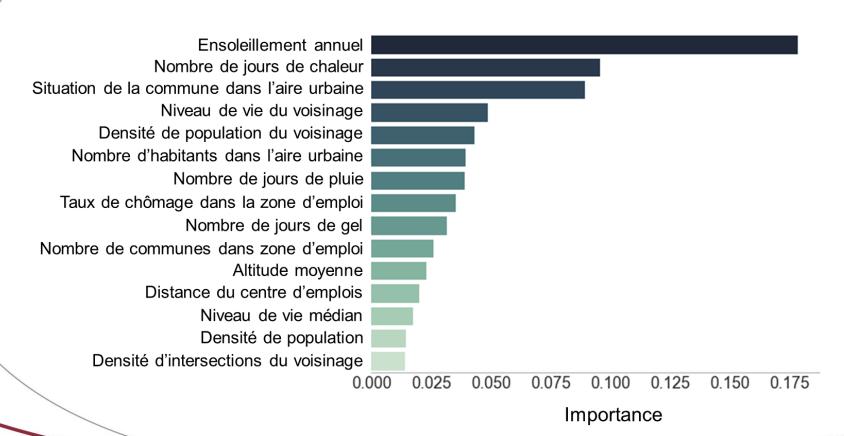
Stratification



Validation croisée

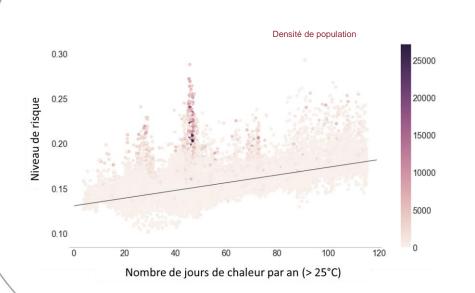


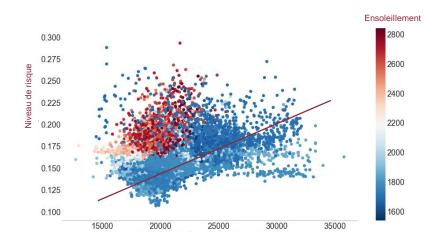
DOMMAGE – L'IMPORTANCE DES FACTEURS CLIMATIQUES ET DES DYNAMIQUES DE PEUPLEMENT



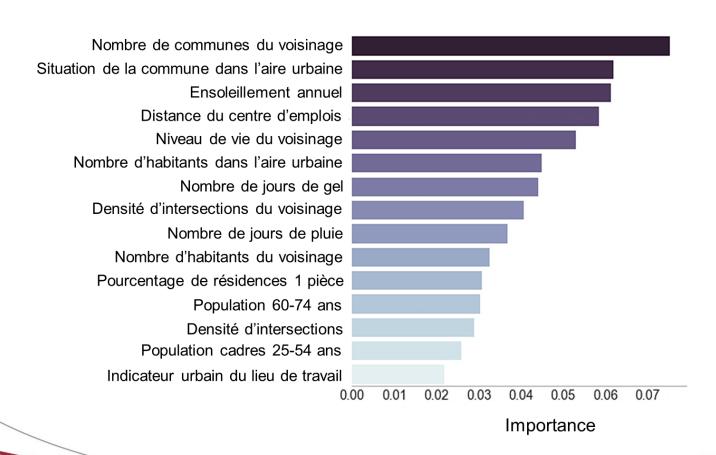
IMPORTANCE DES FACTEURS EXTERNES - DOMMAGE

Pouvoir explicatif significatif des variables météorologiques

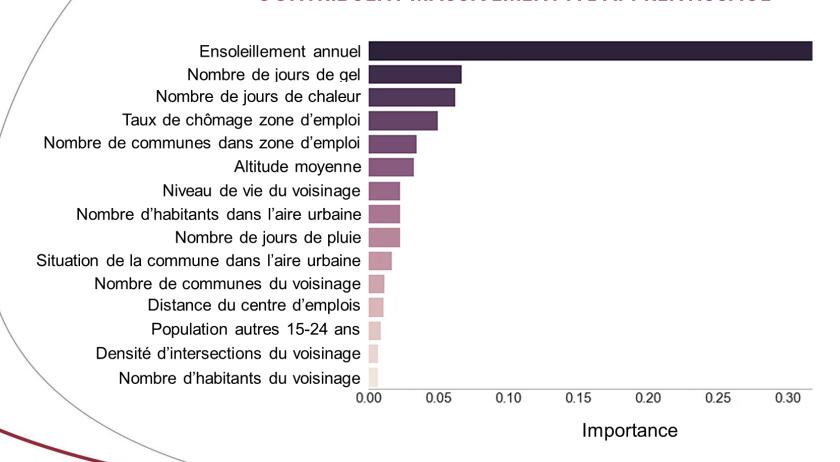




VOL – L'IMPORTANCE DES FACTEURS SOCIO-ECONOMIQUES ET DES DONNÉES DU VOISINAGE

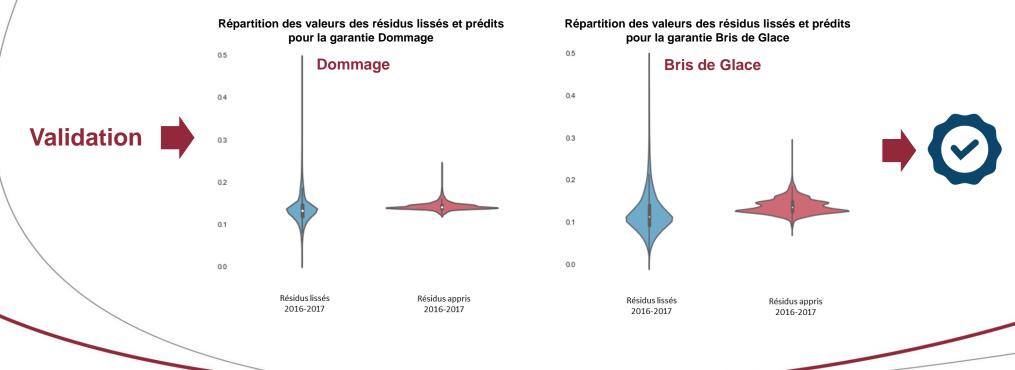


BRIS DE GLACE - LES FACTEURS METEOROLOGIQUES CONTRIBUENT MASSIVEMENT A L'APPRENTISSAGE



Modèle retenu pour chaque garantie : GRADIENT TREE BOOSTING

- **RÉSEAUX DE NEURONES** : Inefficaces pour l'importance des variables
- RANDOM FOREST : Moins fidèle à la réalité de l'échantillon d'apprentissage

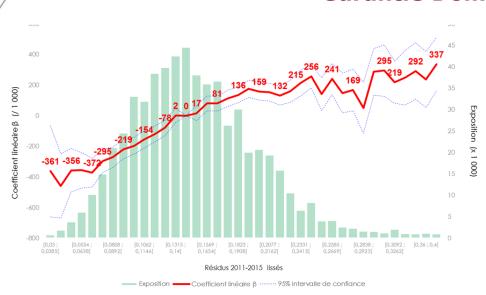


RESULTATS CARTOGRAPHIQUES – IMPACT INÉGAL DES FACTEURS REGIONAUX SELON LES GARANTIES

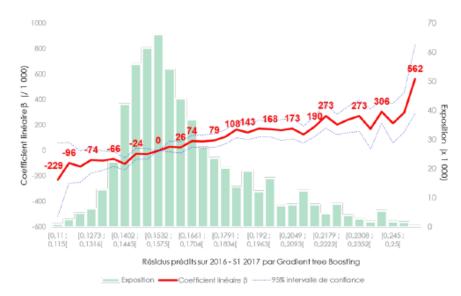
GARANTIE GARANTIE GARANTIE DOMMAGE BRIS DE GLACE VOL

Apport de la nouvelle méthodologie

Garantie Dommage



Valeurs des coefficients estimés (rouge) pour chaque segment de valeurs des résidus lissés de la méthode traditionnelle associé à son exposition (vert)



Valeurs des coefficients estimés (rouge) pour chaque segment de valeurs de prédiction des résidus moyens lissés par le Gradient Tree Boosting associé à son exposition (vert)

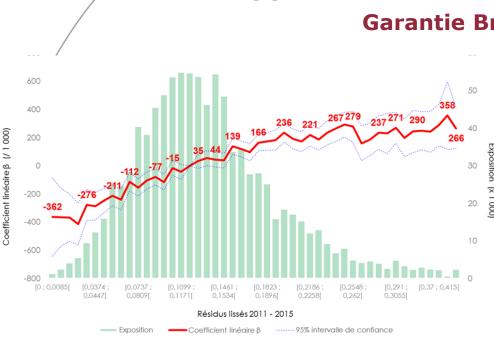
Gain en **amplitude** des coefficients β et une meilleure **stabilité** aux valeurs extrêmes

70

10

400

200



Résidus prédits sur 2016 - \$1 2017 par Gradient Tree Boosting

Exposition

Coeffcient linéaire β 95% intervalle de confiance

Valeurs des coefficients estimés (rouge) pour chaque segment de valeurs de prédiction des résidus moyens lissés par le Gradient Tree Boosting associé à son exposition (vert)

Valeurs des coefficients estimés (rouge) pour chaque segment de valeurs des résidus lissés de la méthode traditionnelle associé à son exposition (vert)

Gain en **amplitude** des coefficients β et une meilleure **stabilité** aux valeurs extrêmes

Conclusion

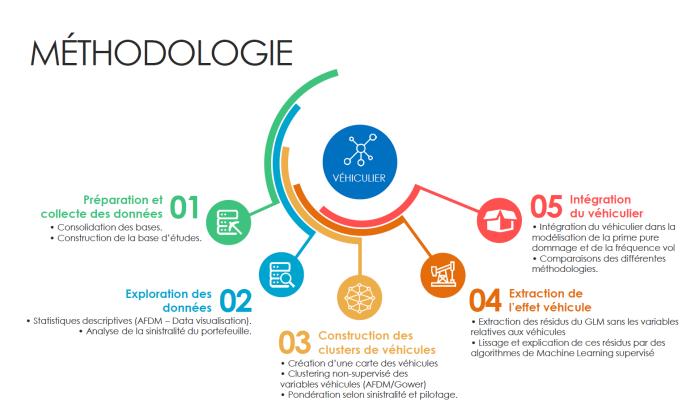
IMPORTANCE DE LA COLLECTE ET DU RETRAITEMENT DES DONNÉES

LA QUALITÉ DES DONNÉES CONDITIONNE LA PERFORMANCE DE TOUS LES MODÈLES

LA VISÉE OPÉRATIONNELLE FAÇONNE LE TRAVAIL TECHNIQUE

Perspectives

Et le Véhiculier?



MERCI DE VOTRE ATTENTION