

Does autocalibration improve goodness of lift?

Auteur 1
Harrison Verelst

Auteur 2
Nicolas Ciatto

Auteur 3
Julien Trufin

Auteur 4
Michel Denuit

Auteur 5
Timo Anteunis

Introduction: tarification

- Soit une réponse Y (fréquence, sévérité ou coût total) et un ensemble de caractéristiques X_1, \dots, X_p , rassemblées dans un vecteur X.
- La tarification actuarielle a pour objectif d'estimer précisément la prime pure en exploitant l'information contenue dans X:

$$\hat{\pi}(X) \approx E[Y|X].$$

- Propriétés désirées d'une tarification :
 - Corrélation entre la prime pure et la sinistralité.
 - Equilibre global entre la somme des primes pures et la somme des sinistres :
 - Permettre à l'assureur d'indemniser ses bénéficiaires et les tierces parties sans déficit (ou excès).
 - Equilibre local dans des sous-portefeuilles:
 - · Garantir une tarification compétitive.

Introduction

- Modèles fréquemment utilisés:
 - GLM (Generalized Linear Models).
 - GAM (Generalized Additive Models).
 - · Boosting.
 - Réseau de neurones.
- Avantages et inconvénients
 - GLM & GAM :
 - + : Impose des contraintes d'équilibre global et local via les équations de vraisemblances.
 - - : Modèle rigide et corrélation généralement plus faible entre la prime et la réponse.
 - Modèles non paramétriques : Boosting, réseau de neurones :
 - + : Montre souvent une meilleure corrélation avec la réponse.
 - - : Relaxation des contraintes d'équilibre tant au niveau global que local.

Equilibre global et local désiré en assurance n'est pas présent dans les modèles non paramétriques.

=> Correction suggérée : autocalibration.

Autocalibration: définition

- Soit $\hat{\pi}$, un prédicteur calibré sur un jeu de données (Y, X).
- Ce prédicteur, $\hat{\pi}$, est dit autocalibré s'il vérifie la condition suivante :

$$\hat{\pi}(\mathbf{X}) = E[Y|\hat{\pi}(\mathbf{X})].$$

Cela peut être interprété comme une condition d'autofinancement, ou d'absence de transfert de prime entre catégories d'assurés.

Autocalibration: implémentation

- On applique initialement une tarification classique : $\hat{\pi}(X) \approx E[Y|X]$
 - Aucune garantie que ce prédicteur $\hat{\pi}(X)$ ne satisfasse l'autocalibration.
- La méthode proposée, par Denuit, Charpentier et Trufin, pour autocalibrer ce prédicteur, et donc restaurer les équilibres globaux et locaux dans des sous portefeuilles assez large, est de passer à sa version « Balanced-Corrected » : $\widehat{\pi}_{bc}$.
- La version Balance-Corrected est définie tel que:

$$\widehat{\pi_{bc}}(\mathbf{X}) = E[Y|\widehat{\pi}(\mathbf{X})].$$

• Cfr Propriété 5.1 dans Denuit, Charpentier et Trufin (2021).

dont l'espérance est égale à E[Y].

Autocalibration: implémentation

- Le prédicteur initial $\hat{\pi}$ peut donc être facilement autocalibré en ajoutant une étape après la tarification initiale :
 - Un GLM local constant (GLM avec uniquement un intercept) et fonction de lien canonique est calibré sur base des triplets $(Y, e, \hat{\pi}(X))$:
 - Afin de passer à π̂_{bc}, on considère chaque profil de risque x, pour lesquels on définit un voisinage V(x).
 V(x) rassemble un pourcentage α des données avec les primes π̂(x_i) les plus proches de π̂(x).
 Où α, le paramètre de lissage, contrôle la taille des sous-ensembles où l'on impose l'équilibre local.
 - Le alpha optimal est choisi par likelihood cross-validation.
 - Au sein du voisinage V(x), des poids φ_i sont assignés à chaque observation :
 - Fonction de la distance de $\hat{\pi}(x_i)$ à $\hat{\pi}(x)$.
 - $\varphi_i(\hat{\pi}(x))$ est plus grand chez les assurés, i, pour lesquels $\hat{\pi}(x_i)$ est proche de $\hat{\pi}(x)$ et vice versa.
 - Uniforme ou constant.

Autocalibration: implémentation

- Le prédicteur initial $\hat{\pi}$ peut donc être facilement autocalibré en ajoutant une étape après la tarification initiale :
 - Un GLM local constant (GLM avec uniquement un intercept) est calibré sur base des triplets $(Y, e, \hat{\pi}(\mathbf{X}))$:
 - L'équation $\widehat{\pi_{bc}}(X) = E[Y|\widehat{\pi}(X)]$ du slide précédent se traduit par pour le GLM local constant par l'équation de vraisemblance :

$$\sum_{i\in V(\mathbf{x})} \varphi_i(\widehat{\pi}(\mathbf{x})) y_i = \sum_{i\in V(\mathbf{x})} \varphi_i(\widehat{\pi}(\mathbf{x})) e_i \widehat{\pi_{bc}}(\mathbf{x}).$$

Qui pour des poids uniformes donne :

$$\sum_{i\in V(x)} y_i = \sum_{i\in V(x)} e_i \widehat{\pi_{bc}}(x).$$

Qui assure l'équilibre au niveau local.

Autocalibration: conclusion

- L'ajout d'un GLM avec un intercept uniquement à la tarification initiale :
 - Permet d'implémenter un équilibre local au sein de sous-portefeuilles.
 - Ces sous-portefeuilles rassemblent des assurés présentant la même prédiction initiale.
 - !! Ne signifie pas que ces assurés présentent le même profil de risque !!
- Cette approche est transparente et compréhensible car c'est une application du principe de mutualisation des risques, cher à l'assurance.

Application

- Base de données :
 - Portefeuille automobile disponible dans le package CASdatasets de R.
 - Notre étude s'intéresse à la fréquence de sinistres.
 - 678 013 observations disponible et 9 variables explicatives.
- Pour l'analyse est divisé en 3 parties:
 - Set d'entrainement (60%) : calibré le modèle initial, $\hat{\pi}$.
 - Set de correction (20%) : autocalibration via le GLM local, $\widehat{\pi_{bc}}$.
 - Set de test (20%) : pour comparer les différents modèles.

Application

- Pour la prime initiale, on considère 3 modèles différents :
 - Un GLM : $\widehat{\pi_{glm}}$.
 - Un GAM : $\widehat{\pi_{gam}}$.
 - Un boosting : $\widehat{\pi_{bst}}$.
- Tout les graphes qui suivent sont produits sur les données du set de test, qui n'a pas été utilisé pour calibrer les différents modèles.

Application: Résultat

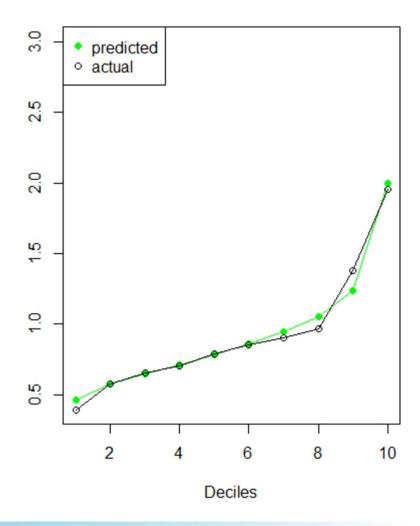
• Equilibre global ? $E[Y_{test}] = 0.1003$

	Avant autocalibration : $\hat{\pi}$	Après autocalibration : $\widehat{\pi_{BC}}$
$\widehat{\pi_{glm}}$	0.1092	0.1052
$\widehat{\pi_{gam}}$	0.1100	0.1061
$\widehat{\pi_{bst}}$	0.0821	0.1050

• Correction importante sur le boosting qui sous-estimait la fréquence.

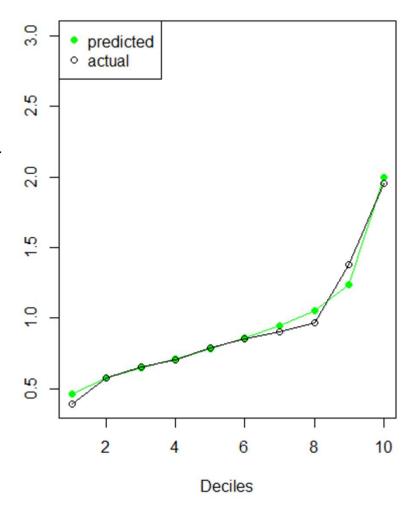
Application : Simple Lift Charts

- Que sont les diagrammes de lift ?
 - Permettent de segmenter les profils de risques d'assurés.
 - Aide à répondre aux questions suivantes :
 - « Comment est-ce que mon modèle différencie les bons et mauvais profils ?».
 - « Est-ce que mon modèle aide à empêcher l'antisélection ?».



Application: Simple Lift Charts

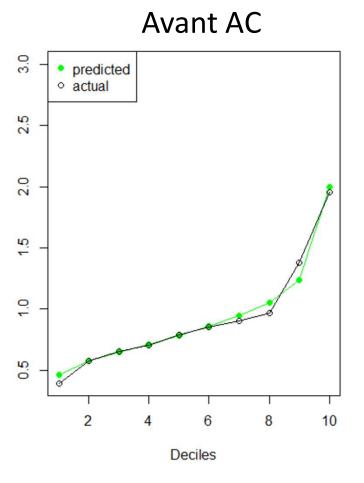
- Observations sont ordonnées sur base des prédictions par ordre croissant.
- Observations ordonnées sont réparties en K sousensembles de taille équivalente.
- Pour chaque sous-ensemble, la moyenne des prédictions et la moyenne observée sont affichées par sousensemble.
- Pour une meilleure lisibilité, les valeurs sont normalisées par la moyenne des prédictions du set de test.



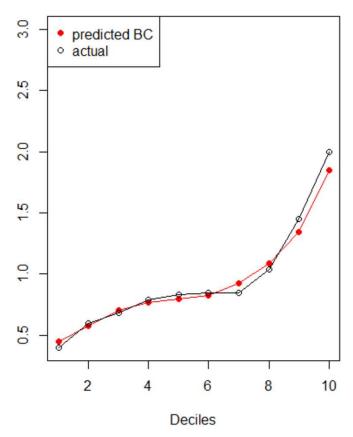
Résultats GLM

Lift: avant AC	Lift: après AC
1.53	1.40

 Faible impact anticipé car le GLM avec lien log impose déjà l'équilibre local et global.

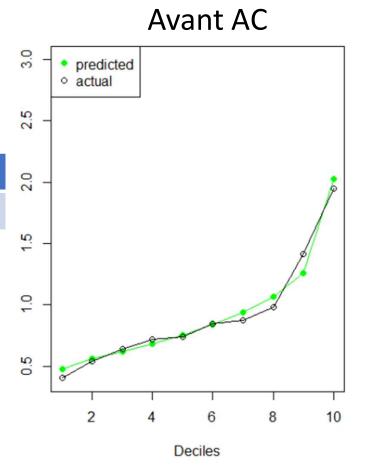


Après AC

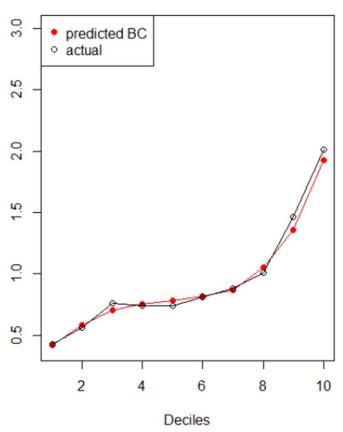


Résultats GAM

Lift: avant AC	Lift: après AC
1.55	1.51



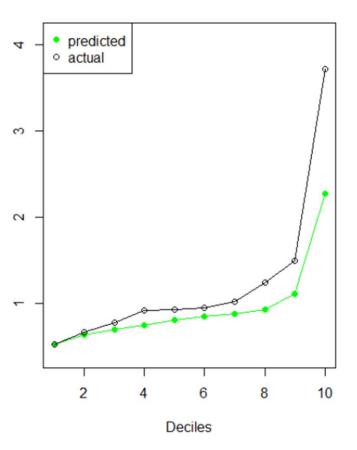
Après AC



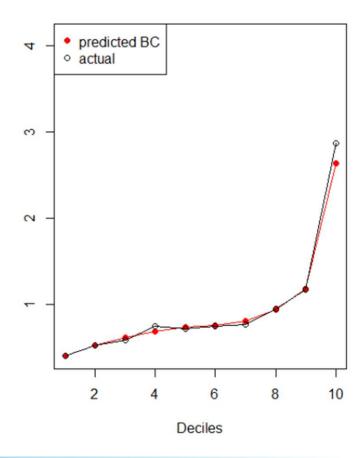
Résultats Boosting

Lift: avant AC	Lift: après AC
1.75	2.23

- Sous-estimation avant autocalibration.
- Équivalence après autocalibration.
- Gain en lift.



Après AC

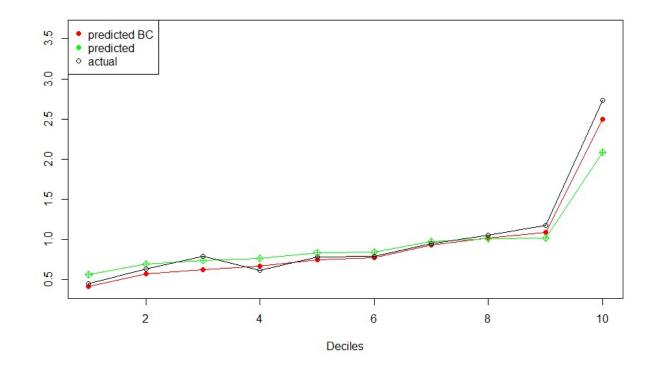


Application: Double Lift Charts

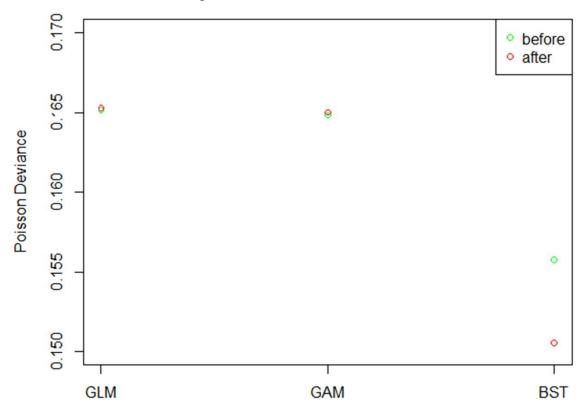
- Calcul du ratio entre les primes après et avant autocalibration.
- Observations sont ordonnées sur base du ratio par ordre croissant.
- Observations ordonnées sont réparties en K sous-ensembles de taille équivalente.
- Pour chaque sous-ensemble, la moyenne des prédictions avant et après autocalibration et la moyenne observée sont affichées par sous-ensemble.
- Les valeurs de chacun des n sous-ensembles sont normalisées par les valeurs moyennes prédites ou observées.

Résultats Boosting

- Effet de l'autocalibration visible sur les premiers et derniers sousensembles :
 - Ratio d'autocalibration le plus petit et le plus grand.
 - Corrige la prédiction vers l'observé.



Out-of-sample Deviance



- Au plus petite la déviance, au plus performant le modèle.
- Meilleure performance pour le boosting:
 - Plus grande corrélation avec la réponse vs GLM, GAM.
- Autocalibration améliore la déviance.

Conclusion:

- Les différentes références et notre étude empirique nous permettent de retenir les principaux atouts de l'autocalibration:
 - Restaurer l'équilibre global.
 - Restaurer l'équilibre local dans des sous ensembles assez larges.
 - · Garder la bonne corrélation entre les prédictions et la réponse.
 - · Améliorer le lift.
- Tout ceci suggère que l'autocalibration est un élément clé dans les tarifications voulant inclure des modèles d'intelligence artificielle.
- De fait, on réconcilie les modèles modernes avec les anciens principes de MMT.

Références

- M. Denuit, A. Charpentier, and J. Trufin. Autocalibration and tweedie dominance for insurance pricing with machine learning. Insurance: Mathematics and Economics, 101:485–497, 2021.
- N. Ciatto, H. Verelst, J. Trufin, M. Denuit. Does autocalibration improve goodness of lift? *European Actuarial Journal*, 1-8, 2022.
- Autocalibration Dashboard.

Annexe: Propriété 5.1. Denuit, Charpentier et Trufin (2021)

Si $s \to E[Y|\hat{\pi}(X) = s]$ est une fonction continue, alors la version « Balance-Corrected », $\widehat{\pi_{bc}}$, de la prime $\widehat{\pi}$ considérée satisfait à la propriété d'autocalibration.

Annexe: LCVplot

- En pratique, le alpha optimal est choisi par *LCVplot*. La fonction *lcvplot* appel la fonction *lcv* pour une grille de paramètres alpha. Ces fonctions proviennent du package *locfit* et n'implémentent rien d'autre que des régressions polynomiale locales.
- On obtient la statistique de vraisemblance par cross-validation contre le degré de liberté. Le degré de liberté à une correspondance 1-1 avec les valeurs de alpha.
- Un exemple de *LCVplot* est le suivant: (GLM Poisson à gauche, GAM Poisson au centre et Boosting Poisson à droite).

