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1. INTRODUCTION

Problems with data



1.1 PROBLEMS WITH DATA

▪ Data are key drivers for insurers but require sourcing, labelling, budget, etc.

▪ Plus, they are not always what we would expect, and it may cause troubles:

Quality

- Difficulty to produce 
accurate calculations

- Additional work for 
controls, imputation 
tools or data acquisition

Exhaustivity

- Model miss training
- Tool miss testing
- Inability to interpret 

adversarial cases or drift
- Require more labeling 

- Exposure to Personal 
or Medical Data legal 
constraints (GDPR)

- Contractual or 
strategical concerns

Privacy
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▪ Synthetic data aim at generating ”fake data” 
that are similar to data from real world.

▪ It may be well suited for insurance use cases: 

1.2 USE SYNTHETIC DATA

Quality - Missing data, incoherent values, ineffective data 
quality techniques for law behaviour setup, 
technical pricing or reserving calculations.

Data 
imputation

Exhaustivity - Limited labelling budget, lack of data regarding 
emerging risks, new stress test for capital 
modelling, rare events scenario for natcat, fraud.

Privacy
- Restricted use of medical or geotracked data for 

actuarial calculations, HDS storage, third parties 
(broker, MGA) share.

Data 
augmentation

Data 
anonymisation
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Figure 1: 3D aerial image generation Bifrost.ai



2. WHAT ARE 
SYNTHETIC DATA?

Approaches and 
methods



2.1 HOW TO GENERATE SYNTHETIC DATA?
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- Fit statistical estimators or train machine 
learning models on real data to learn an 
approximate distributions 

- Infere to get samples of new synthetic data

▪ Generated data samples must have the same statistical / structural properties as real data. 
Two main data synthesizer approach exist:  sampling and simulation based methods.

▪ About sampling-based techniques:

▪ Sampling-based methods can be used on any 
type of data (tabular, images, time series)

Figure 2: Sampling-based method scheme 



▪ Several sampling-based methods have been developed in recent years going from 
simple statistical methods to more complex techniques using neural networks: 

2.2 SYNTHETIC DATA GENERATION FAMILIES
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Figure 3: Synthetic data families (CCR credit)



▪ Generative Adversarial Networks (GANs) are deep learning models based on adversarial 
training that can learn to generate new samples of content.

2.3 NEURAL GENERATIVE TECHNIQUES (GAN)

- The primary objective of 
the GANs is to learn the 
unknown probability 
distribution of the data

- Composed of two 
architectural 
components: a generator 
and discriminator

8

Figure 4: a simplified architectural schema for vanilla GAN [1]. [1] PEIXIANG Z., Generative Adversarial Network (GAN) Overview, 2018, Github, [Link]

https://zhongpeixiang.github.io/generative-adversarial-network-overview/
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2.3 NEURAL GENERATIVE TECHNIQUES (GAN)

▪ Generation phase: goal is to make 
fake data looks similar to the one 
we get from real events. 

▪ Discrimination phase: it classifies 
fake data from the generator.

▪ Final phase:

- When the discriminator’s accuracy 
reaches  50%, it is no longer possible 
for the discriminator network to 
distinguish real from fake samples.

- The generated samples are similar to 
those obtained from real world.

[2] Minsuk Kahng, Nikhil Thorat, Polo Chau, Fernanda Viégas, and Martin Wattenberg. "GAN Lab: Understanding Complex Deep Generative Models using 
Interactive Visual Experimentation." Jan. 2019. https://arxiv.org/abs/1809.01587

Figure 5: demo on how GANs works by GAN Lab [2]

https://arxiv.org/abs/1809.01587


▪ Conditional GAN on Tabular Data (CTGAN), is an adaptation of GAN architecture to model 
tabular data using a conditional generator

[3] Lei et al, Oct 2019. Modeling tabular data using conditional GAN. https://arxiv.org/abs/1907.00503
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2.4 CONDITIONAL GAN

- Extension of vanilla GAN by 
conditioning both the generator and 
the discriminator with an extra 
information

- Augments the training procedure 
taking into account data imbalance 
through use of a conditional generator 
and sample training for discrete 
column

- Uses a preprocessing step called 
mode-specific normalization to 
normalize continuous columns Figure 6: Architecture of a CTGAN model [3]. 

https://arxiv.org/abs/1907.00503


3. HOW TO USE 
SYNTHETIC DATA ?

Use cases and 
implementation



▪ Data provided by an insurance pricing 
game competition*.

▪ Nearly 60k real historical motor insurance 
policies for 4 consecutive years. 

▪ Each policy concerns a vehicle, its drivers and an
accident history over 4 years with a total of  228k
observations. 

▪ Key features: vehicle age, vehicle value, speed, driver age, license age, coverage of 
policy, policy duration, etc.

*AIcrowd https://www.aicrowd.com/challenges/insurance-pricing-game
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3.1 QUALITY - MOTOR PRICING

Are synthetic data methods relevant for missing values imputation ?

Figure 7: Data quality overview using pandas profiling

https://www.aicrowd.com/challenges/insurance-pricing-game
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3.1 QUALITY - SYNTH. INPUTATION STRATEGIES

▪ Method A - Univariate 
(Synthetic Data + Simple desc. stat. imputer)

▪ Method B - Multivariate
(Synthetic Data + Similarity matching)

▪ Method C - Multivariate
(Synthetic Data + MissForest[4] imputer)

Figure 8: Method A

Figure 10: Method C
Figure 9: Method B

[4] Daniel J. Stekhoven, Peter Bühlmann, MissForest—non-parametric missing value imputation for mixed-type data, https://doi.org/10.1093/bioinformatics/btr597

https://doi.org/10.1093/bioinformatics/btr597


▪ We evaluate methods by creating a corrupted datasets:
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3.1 QUALITY - EVAL. METRICS

▪ We loop through this process to get a metrics distribution per method

Figure 11: Evaluation process and metrics creation
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3.1 QUALITY - IN PRACTICE

▪ Strategies based on MissForest model give higher 
performances

▪ Using data augmentation with MissForest becomes 
relevant when frequency of NaN is high (>20%)

Method A

Method B

Baseline - 
Simple Imputer

Baseline - 
Iterative Imputer

Baseline - 
MissForest

Method C

Figure 12: RMSE Box plot for different synthesizer techniques



▪ French motor insurance portfolio collected for 
reinsurance purpose. 

▪ ~2k severe bodily injury claims from 1999 to 2021, 
reviewed annually. 

▪ Updated prejudices charges with ~137k observations.

▪ Key features identified: age, sex and 
socio-professional category of the victim, type of 
injury, rate of permanent damage to physical integrity.
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3.2 EXHAUSTIVITY - CLAIMS ANALYSIS

How to use synthetic data methods to improve model knowledge? 

Figure 13: Data quality overview using pandas profiling
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3.2 EXHAUSTIVITY - UNCERTAINTY AND ADVERSARIAL DATA

▪ ML models may not be trained and 
tested on the whole observations 
possibilities

▪ Techniques such as BNN [5] are helpful 
because they introduce uncertainty [6] 
measures that point knowledge 
weakness but not unknown scenarios

▪ Synthetic data are used to generate 
these scenarios and measure the whole 
models uncertainties

[5] N. G. Polson, V. Sokolov et al., (2017) Deep learning: a Bayesian perspective, Bayesian Analysis, vol. 12, no. 4, pp. 
1275–1304. https://arxiv.org/pdf/1706.00473.pdf
[6] Y Gal, (2016) Uncertainty in Deep Learning, http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf

Figure 14: SWI prediction using Bayesian LSTM

https://arxiv.org/pdf/1706.00473.pdf
http://www.cs.ox.ac.uk/people/yarin.gal/website//thesis/thesis.pdf
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3.2 EXHAUSTIVITY - AUGMENTATION PROCESS

▪ Randomly drop regions from the 
original dataset and train both SDV 
and BNN

▪ We inject synthetic data in empty 
regions (black regions) using 
conditional generator (CTGAN)

▪ The trained BNN model will predict 
the uncertainties on injected 
synthetic data

▪ Compare the measured 
uncertainties between the synthetic 
and the real data

Figure 15: Synthetic data process of completion
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3.2 EXHAUSTIVITY - IN PRACTICE

▪ Train of BNN and CTGAN models

▪ Use of CTGAN to inject synthetic 
data in the black regions and of 
the BNN to estimate the 
associated uncertainties

▪ We represent synthetic 
uncertainty distribution and 
compare it with real data 
uncertainty distribution

▪ In any cases, we observed 
that synthetic uncertainty
was shifted to the left

 

Figure 16: Uncertainty generation using synthetic data

It allows to 
compute a lower 

bound uncertainty 
of the model



4. CONCLUSION 
AND PERSPECTIVES
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▪ Synthetic Data implementation is helpful to handle data issues, 
specifically for insurance use cases:

- About quality: a good imputer in addition to common techniques
- About exhaustivity: a good approach to back test model scope

4.1 CONCLUSION & PERSPECTIVES

▪ Future perspectives:
- Use other techniques for generation, such as TVAE
- Tool testing (excel file sensitivity) Examples: S2, non life reserving
- Other task types: NLP, (aerial) image
- Wide field of investigation and many libraries: nlpaug, sdv, faker, mimesis, 

datasynthetizer, scikit learn, bifrost



Thank you!
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APPENDIX - METHODS - Gaussian Copulas

▪ Copulas allows to isolate the dependency structure of a set of variables in a multivariate 
distribution. 

▪ We can construct any multivariate 
distribution by separately specifying the 
marginal distributions and the copula.

▪ Works with numerical or categorical features 
(after performing an encoding).

▪ Find marginal distribution for each variable 
using MLE or empirical estimator so it 
preserves marginal distributions.

Figure: fitting a copula for a data table process 
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APPENDIX - METHODS - Bayesian Networks 

▪ A Bayesian network is a graphical model of the joint probability distribution for a set of 
variables.

▪ Two components: a graphical structure and a 
set of conditional probability distributions.

▪ Search for a suitable network structure and 
probability distribution for a given dataset 
and then fit it to the data.

▪ Generate differentially private synthetic data 
(make privacy concerns high priority)

Figure: an example of what a Bayesian network looks like (authors).  
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APPENDIX - METHODS - Comparison of 
generation methods

▪ We used SDGym* library to evaluate the effectiveness of using synthetic data to train machine learning 
algorithms on different tasks. We use four datasets (Adult, Census and Covtype from UCI Machine 
learning and Credit from Kaggle) to generate corresponding synthetic datasets.

Dataset size Attributes Continuous Binary Multi-class task

Adult 32561 15 6 2 7 classification

Census 299385 41 7 3 31 classification

Covtype 581012 55 10 44 1 classification

Credit 284807 30 29 1 0 classification

* SDGym is a benchmarking library developed by the team who created the SDV library .

Table: Used datasets characteristics (we used those provided in SDGym https://github.com/sdv-dev/SDGym/tree/master/results)
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APPENDIX - METHODS - Comparison of generation methods

▪ We trained then different classification models (Decision trees, AdaBoost and MLP) on real training data, 
and evaluating them on real test data. The Identity method corresponds to real training data. 

Table: results of evaluation (we used those provided in SDGym https://github.com/sdv-dev/SDGym/tree/master/results)

Method CovType Credit Adult Census

Accuracy F₁-score (micro/macro) Accuracy F₁-score Accuracy F₁-score Accuracy F₁-score

Identity 0,758886 0,652621 0,758886 0,992483 0,545017 0,824425 0,663005 0,905330 0,463875

Gaussian copula 0,506743 0,182262 0,506743 0,998250 - 0,779675 0,198041 0,934769 0,132829

PrivBayes 0,468946 0,214713 0,468946 0,960120 0,010973 0,795191 0,428731 0,903208 0,244719

CTGAN 0,581583 0,329751 0,581583 0,993329 0,523338 0,78525 0,606637 0,890426 0,387663

TableGAN - - - 0,995366 0,27029 0,791183 0,352537 0,936630 0,272120

TVAE 0,654793 0,456446 0,654793 0,99825 - 0,803008 0,618866 0,934451 0,382320


